Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-driven Under Frequency Load Shedding Scheme in Power Systems (2307.00819v3)

Published 3 Jul 2023 in eess.SY and cs.SY

Abstract: Under frequency load shedding (UFLS) constitutes the very last resort for preventing total blackouts and cascading events. Fluctuating operating conditions and weak resilience of the future grid require UFLS strategies adapt to various operating conditions and non-envisioned faults. This paper develops a novel data-enabled predictive control algorithm KLS to achieve the optimal one-shot load shedding for power system frequency safety. The algorithm utilizes a latent extractor network to track parameter variations in the system dynamic model, enabling a coordinate transformation from the delay embedded space to a new space where the dynamics can be linearly represented. To address approximation inaccuracies and the discrete nature of load shedding, a safety margin tuning scheme is integrated into the KLS framework, ensuring that the system frequency trajectory remains within the safety range. Simulation results show the adaptability, prediction capability and control effect of the proposed UFLS strategy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. C. Li, Y. Wu, Y. Sun, H. Zhang, Y. Liu, Y. Liu, and V. Terzija, “Continuous under-frequency load shedding scheme for power system adaptive frequency control,” IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 950–961, 2020.
  2. T. Amraee, M. G. Darebaghi, A. Soroudi, and A. Keane, “Probabilistic under frequency load shedding considering rocof relays of distributed generators,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 3587–3598, 2018.
  3. F. Ceja-Gomez, S. S. Qadri, and F. D. Galiana, “Under-frequency load shedding via integer programming,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1387–1394, 2012.
  4. S. S. Banijamali and T. Amraee, “Semi-adaptive setting of under frequency load shedding relays considering credible generation outage scenarios,” IEEE Transactions on Power Delivery, vol. 34, no. 3, pp. 1098–1108, 2019.
  5. X. Shiyun, W. Ping, Z. Bing, Y. J., and C. Z., “Coordinated control strategy of interconnected grid integrated with uhvdc transmission line from hami to zhengzhou,” Power Syst. Technol, vol. 39, no. 7, p. 6, 2015.
  6. X. Chen, G. Qu, Y. Tang, S. Low, and N. Li, “Reinforcement learning for selective key applications in power systems: Recent advances and future challenges,” IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 2935–2958, 2022.
  7. H. Golpîra, H. Bevrani, A. Román Messina, and B. Francois, “A data-driven under frequency load shedding scheme in power systems,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1138–1150, 2023.
  8. Q. Shi, F. Li, and H. Cui, “Analytical method to aggregate multi-machine sfr model with applications in power system dynamic studies,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6355–6367, 2018.
  9. Z.-S. Hou and Z. Wang, “From model-based control to data-driven control: Survey, classification and perspective,” Information Sciences, vol. 235, pp. 3–35, 2013, data-based Control, Decision, Scheduling and Fault Diagnostics. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0020025512004781
  10. J. Xie and W. Sun, “Distributional deep reinforcement learning-based emergency frequency control,” IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 2720–2730, 2022.
  11. W. Cui, Y. Jiang, and B. Zhang, “Reinforcement learning for optimal primary frequency control: A lyapunov approach,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1676–1688, 2023.
  12. K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of coordinates and governing equations,” Proceedings of the National Academy of Sciences, vol. 116, no. 45, pp. 22 445–22 451, 2019. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.1906995116
  13. M. Korda, Y. Susuki, and I. Mezić, “Power grid transient stabilization using koopman model predictive control,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 297–302, 2018, 10th IFAC Symposium on Control of Power and Energy Systems CPES 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896318334372
  14. Z. Ping, Z. Yin, X. Li, Y. Liu, and T. Yang, “Deep koopman model predictive control for enhancing transient stability in power grids,” International Journal of Robust and Nonlinear Control, vol. 31, no. 6, pp. 1964–1978, 2021.
  15. S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern koopman theory for dynamical systems,” SIAM Review, vol. 64, no. 2, pp. 229–340, 2022. [Online]. Available: https://doi.org/10.1137/21M1401243
  16. E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of koopman eigenfunctions for control,” Machine Learning: Science and Technology, vol. 2, no. 3, p. 035023, jun 2021. [Online]. Available: https://doi.org/10.1088/2632-2153/abf0f5
  17. Q. Cao, C. Shen, and Y. Liu, “Data-driven emergency frequency control for multi-infeed hybrid ac-dc system,” IEEE Transactions on Power Systems, pp. 1–13, 2023.
  18. C. Shen, Q. Cao, M. Jia, Y. Chen, and S. Huang, “Concepts, characteristics and prospects of application of digital twin in power system,” Proceedings of the CSEE, vol. 42, no. 2, p. 487–498, 2022.
  19. A. A. Zadeh, A. Sheikhi, and W. Sun, “A novel probabilistic method for under frequency load shedding setting considering wind turbine response,” IEEE Transactions on Power Delivery, vol. 37, no. 4, pp. 2640–2649, 2022.
  20. D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109814005160
  21. Y.-Y. Hong and C.-Y. Hsiao, “Under-frequency load shedding in a standalone power system with wind-turbine generators using fuzzy pso,” IEEE Transactions on Power Delivery, vol. 37, no. 2, pp. 1140–1150, 2022.
  22. S. ichi Azuma and T. Sugie, “Optimal dynamic quantizers for discrete-valued input control,” Automatica, vol. 44, no. 2, pp. 396–406, 2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0005109807003068
  23. R. Larson, “Optimum quantization in dynamic systems,” IEEE Transactions on Automatic Control, vol. 12, no. 2, pp. 162–168, 1967.
  24. B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,” Proceedings of the National Academy of Sciences, vol. 17, no. 5, pp. 315–318, 1931.
  25. Y. Xu, M. Netto, and L. Mili, “Propagating parameter uncertainty in power system nonlinear dynamic simulations using a koopman operator-based surrogate model,” IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 3157–3160, 2022.
  26. F. Takens, “Detecting strange attractors in turbulence,” Lecture Notes in Mathematics, p. 366–381, 1981.
  27. J. Bakarji, K. Champion, J. N. Kutz, and S. L. Brunton, “Discovering governing equations from partial measurements with deep delay autoencoders,” 2022.
  28. M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S000510981830133X
  29. S. Chen, V. M. Preciado, M. Morari, and N. Matni, “Robust model predictive control with polytopic model uncertainty through system level synthesis,” 2023.
  30. J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthesis,” Annual Reviews in Control, vol. 47, pp. 364–393, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1367578819300215
  31. Y. Song, Y. Chen, Z. Yu, S. Huang, and C. Shen, “Cloudpss: A high-performance power system simulator based on cloud computing,” Energy Reports, vol. 6, pp. 1611–1618, 2020, 2020 The 7th International Conference on Power and Energy Systems Engineering. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352484720317297
  32. “MS Windows NT kernel description,” https://www.cloudpss.net/, accessed: 2022-06-24.
  33. Y. Liu, Y. Song, Z. Yu, C. Shen, and Y. Chen, “Modeling and simulation of hybrid ac-dc system on a cloud computing based simulation platform - cloudpss,” in 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), 2018, pp. 1–6.

Summary

We haven't generated a summary for this paper yet.