Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Estimation of Under Frequency Load Shedding after Outages in Small Power Systems (2312.11389v2)

Published 18 Dec 2023 in eess.SY and cs.SY

Abstract: This paper presents a data-driven methodology for estimating Under Frequency Load Shedding (UFLS) in small power systems. UFLS plays a vital role in maintaining system stability by shedding load when the frequency drops below a specified threshold following loss of generation. Using a dynamic System Frequency Response (SFR) model we generate different values of UFLS (i.e., labels) predicated on a set of carefully selected operating conditions (i.e., features). Machine Learning (ML) algorithms are then applied to learn the relationship between chosen features and the UFLS labels. A novel regression tree and the Tobit model are suggested for this purpose and we show how the resulting non-linear model can be directly incorporated into a Mixed Integer Linear Programming (MILP) problem. The trained model can be used to estimate UFLS in security-constrained operational planning problems, improving frequency response, optimizing reserve allocation, and reducing costs. The methodology is applied to the La Palma island power system, demonstrating its accuracy and effectiveness. The results confirm that the amount of UFLS can be estimated with the Mean Absolute Error (MAE) as small as 0.213 MW for the whole process, with a model that is representable as a MILP for use in scheduling problems such as unit commitment among others.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. V. Trovato, A. Bialecki, and A. Dallagi, “Unit commitment with inertia-dependent and multispeed allocation of frequency response services,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 1537–1548, 2018.
  2. L. Badesa, F. Teng, and G. Strbac, “Simultaneous scheduling of multiple frequency services in stochastic unit commitment,” IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3858–3868, 2019.
  3. M. Paturet, U. Markovic, S. Delikaraoglou, E. Vrettos, P. Aristidou, and G. Hug, “Stochastic unit commitment in low-inertia grids,” IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 3448–3458, 2020.
  4. M. Shahidehpour, T. Ding, Q. Ming, J. P. Catalao, and Z. Zeng, “Two-stage chance-constrained stochastic unit commitment for optimal provision of virtual inertia in wind-storage systems,” IEEE Transactions on Power Systems, 2021.
  5. C. Ferrandon-Cervantes, B. Kazemtabrizi, and M. C. Troffaes, “Inclusion of frequency stability constraints in unit commitment using separable programming,” Electric Power Systems Research, vol. 203, p. 107669, 2022.
  6. D. T. Lagos and N. D. Hatziargyriou, “Data-driven frequency dynamic unit commitment for island systems with high res penetration,” IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 4699–4711, 2021.
  7. Y. Zhang, H. Cui, J. Liu, F. Qiu, T. Hong, R. Yao, and F. Li, “Encoding frequency constraints in preventive unit commitment using deep learning with region-of-interest active sampling,” IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1942–1955, 2021.
  8. M. Rajabdorri, E. Lobato, and L. Sigrist, “Robust frequency constrained uc using data driven logistic regression for island power systems,” IET Generation, Transmission & Distribution, vol. 16, no. 24, pp. 5069–5083, 2022.
  9. M. Rajabdorri, B. Kazemtabrizi, M. Troffaes, L. Sigrist, and E. Lobato, “Inclusion of frequency nadir constraint in the unit commitment problem of small power systems using machine learning,” Sustainable Energy, Grids and Networks, p. 101161, 2023.
  10. A. Ketabi and M. H. Fini, “An underfrequency load shedding scheme for islanded microgrids,” International Journal of Electrical Power & Energy Systems, vol. 62, pp. 599–607, 2014.
  11. J. Laghari, H. Mokhlis, M. Karimi, A. H. A. Bakar, and H. Mohamad, “A new under-frequency load shedding technique based on combination of fixed and random priority of loads for smart grid applications,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2507–2515, 2014.
  12. C. Wang, S. Chu, Y. Ying, A. Wang, R. Chen, H. Xu, and B. Zhu, “Underfrequency load shedding scheme for islanded microgrids considering objective and subjective weight of loads,” IEEE Transactions on Smart Grid, 2022.
  13. S. M. S. Kalajahi, H. Seyedi, and K. Zare, “Under-frequency load shedding in isolated multi-microgrids,” Sustainable Energy, Grids and Networks, vol. 27, p. 100494, 2021.
  14. K. Mehrabi, S. Afsharnia, and S. Golshannavaz, “Toward a wide-area load shedding scheme: Adaptive determination of frequency threshold and shed load values,” International Transactions on Electrical Energy Systems, vol. 28, no. 1, p. e2470, 2018.
  15. C. Li, Y. Wu, Y. Sun, H. Zhang, Y. Liu, Y. Liu, and V. Terzija, “Continuous under-frequency load shedding scheme for power system adaptive frequency control,” IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 950–961, 2019.
  16. Y. Tofis, S. Timotheou, and E. Kyriakides, “Minimal load shedding using the swing equation,” IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2466–2467, 2016.
  17. S. S. Silva Jr and T. M. Assis, “Adaptive underfrequency load shedding in systems with renewable energy sources and storage capability,” Electric Power Systems Research, vol. 189, p. 106747, 2020.
  18. R. Hooshmand and M. Moazzami, “Optimal design of adaptive under frequency load shedding using artificial neural networks in isolated power system,” International Journal of Electrical Power & Energy Systems, vol. 42, no. 1, pp. 220–228, 2012.
  19. H. Golpîra, H. Bevrani, A. R. Messina, and B. Francois, “A data-driven under frequency load shedding scheme in power systems,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1138–1150, 2022.
  20. G. W. Chang, C.-S. Chuang, T.-K. Lu, and C.-C. Wu, “Frequency-regulating reserve constrained unit commitment for an isolated power system,” IEEE Transactions on power systems, vol. 28, no. 2, pp. 578–586, 2012.
  21. M. Sedighizadeh, M. Esmaili, and S. M. Mousavi-Taghiabadi, “Optimal joint energy and reserve scheduling considering frequency dynamics, compressed air energy storage, and wind turbines in an electrical power system,” Journal of Energy Storage, vol. 23, pp. 220–233, 2019.
  22. F. Pérez-Illanes, E. Álvarez-Miranda, C. Rahmann, and C. Campos-Valdés, “Robust unit commitment including frequency stability constraints,” Energies, vol. 9, no. 11, p. 957, 2016.
  23. D. Maragno, H. Wiberg, D. Bertsimas, S. I. Birbil, D. d. Hertog, and A. Fajemisin, “Mixed-integer optimization with constraint learning,” arXiv preprint arXiv:2111.04469, 2021.
  24. J. Tobin, “Estimation of relationships for limited dependent variables,” Econometrica: journal of the Econometric Society, pp. 24–36, 1958.
  25. S. Verwer, Y. Zhang, and Q. C. Ye, “Auction optimization using regression trees and linear models as integer programs,” Artificial Intelligence, vol. 244, pp. 368–395, 2017.

Summary

We haven't generated a summary for this paper yet.