Polarization of recoil photon in non-linear Compton process (2307.00620v3)
Abstract: The polarization of recoil photon ($\gamma'$) in the non-linear Compton process $e + \vec L \to \vec \gamma' +e'$ in the interaction of a relativistic electron with a linearly polarized laser beam ($\vec L$) is studied within the Furry picture in the lowest-order, tree-level S matrix element. In particular, we consider the asymmetry of differential cross sections ${\cal A}$ for two independent axes describing the Compton process equal to the intrinsic spin variable ${\xi}f_3$, that determines the polarization properties of $\gamma'$. The sign and absolute value of the asymmetry determine the direction and degree of $\gamma'$ polarization. We have analyzed the process in a wide range of laser intensity that covers existing and future experiments. Our results provide additional knowledge for studying nonlinear multi-photon effects in quantum electrodynamics and can be used in planning experiments at envisaged laser facilities.
- A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson. “ Advances in QED with intense background fields”. Phys. Rep. 1010, 1-138 (2023); arXiv:2203.00019v2 [hep-ph].
- A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel. “Extremely high-intensity laser interactions with fundamental quantum systems”. Rev. Mod. Phys. 84, 1177 (2012).
- A. I. Nikishov and V. I. Ritus. “Quantum processes in field of a plane electromagnetic wave and a constant field”. Sov. Phys. JETP. 19, 529 (1964).
- V. I. Ritus. “Quantum effects of the interaction of elementary particles with an intense electromagnetic field”. J. Sov. Laser Res. (United States), 6:5, 497 (1985).
- D. Seipt and B. King. “Spin- and polarization-dependent locally-constant-field-approximation rates for nonlinear Compton and Breit-Wheeler processes”. Phys. Rev. A 102, no. 5, 052805 (2020); B. King and S. Tang. “Nonlinear Compton scattering of polarized photons in plane-wave backgrounds”. Phys. Rev. A 102, no. 2, 022809 (2020).
- A. I. Titov, B. Km̈pfer, H. Takabe, and A. Hosaka. “Breit-Wheeler process in very short electromagnetic pulses”. Phys. Rev. A 87, 042106 (2013).
- A. Di Piazza. “Unveiling the transverse formation length of nonlinear Compton scattering”. Phys. Rev. A 103, no. 1, 012215 (2021).
- A. Ilderton, B. King and S. Tang. “Toward the observation of interference effects in nonlinear Compton scattering”. Phys. Lett. B 804, 135410 (2020).
- A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel. “Implementing nonlinear Compton scattering beyond the local-constant-field approximation”. Phys. Rev. A 98, 012134 (2018).
- T. Heinzl, B. King, and A. J. MacLeod. “The locally monochromatic approximation to QED in intense laser fields”. Phys. Rev. A 102, 0163110 (2020).
- A. I. Titov, B. Kämpfer, A. Hosaka, H. Takabe. “Quantum processes in short and intensive electromagnetic fields”. Phys. Part. Nucl. 47, 456 (2016).
- L. F. Granz, O. Mathiak, S. Villalba-Chávez and C. Müller. “Electron-positron pair production in oscillating electric fields with double-pulse structure”. Phys. Lett. B 793, 85 (2019).
- U H. Acosta, B. Kämpfer. “Strong-field QED in Furry-picture momentum-space formulation: Ward identities and Feynman diagrams”. Phys. Rev. D 108, 016013 (2023).
- S. Meuren on behalf of the FACET-II SFQED Collaboration. “Probing Strong-field QED at FACET-II (SLAC E-320) (2019)”. https://conf.slac.stanford.edu/facet-2-2019/sites/ facet-2-2019.conf.slac.stanford.edu/files/ basic-page-docs/sfqed_2019.pdf; https://facet-ii.slac.stanford.edu/ proposals/accepted-proposals.
- European X-Ray Free-Electron Laser Facility GmbH. https://www.xfel.eu/science/index_eng.html/ Qiqi Yu, Dirui Xu, Baifei Shen, Thomas E. Cowan, and Hans-Peter Schlenvoigt. “X-ray polarimetry and its application to strong-field QED”. High Power Laser Science and Engineering, 2023. https://doi.org/10.1017/hpl.2023.45.
- V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii. “Quantum Electrodynamics”, Vol. 4 (Butterworth-Heinemann, 1982).
- A.I. Titov and B. Kämpfer. “Non-linear Breit–Wheeler process with linearly polarized beams”. Eur. Phys. J. D 74, 218 (2020).
- A. I. Akhiezer and V. B. Berestetsky. “Quantum electrodynamics”. Interscience Publishers; Revised Edition (January 1, 1965).
- M. V. Chistyakov, D. A. Rumyantsev. “The Compton effect in strongly magnetized plasma”. Int. J. Mod. Phys. 2009. Vol. A24, 3995 (2009).
- A. A. Mushtukov, D. I. Nagirner, and J. Poutanen. “Compton scattering S matrix and cross section in strong magnetic field”. Phys. Rev. D 93, no. 2, 105003 (2016).
- W. Greiner and J. Reinhard. “Quantum electrodynamics”. 3rd Edition Springer-Verlag Berlin Heidelberg New York.
- A. I. Titov, A. Otto, B. Kämpfer. “Multi-photon regime of non-linear Breit-Wheeler and Compton processes in short linearly and circularly polarized laser pulses”. Eur. Phys. J. D 74 39 (2020).
- A. I. Titov, B. Kämpfer, T. Shibata, A. Hosaka, H. Takabe. “Laser pulse-shape dependance of Compton scattering”. Eur. Phys. J. D 68, 299 (2014).
- B. Kämpfer and A.I. Titov, “Impact of laser polarization on q-exponential photon tails in nonlinear Compton scattering”. Phys. Ṙev. A 103, 033101 (2021)
- M. Boca and V. Florescu. “Non-linear Compton scattering with a laser pulse”. Phys. Rev. A 80, 053403 (2009), Erratum Phys. Rev. A 81, 039901 (2010).
- A.I. Titov, U Hernandez, and B. Kämpfer. “Positron energy distribution in a factorized trident process”. Phys. Ṙev. A 104, 062811 (2021).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.