Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Self-assembly for a Multi-USV System on Water Surface with Obstacles (2307.00085v2)

Published 30 Jun 2023 in cs.RO

Abstract: Parallel self-assembly is an efficient approach to accelerate the assembly process for modular robots. However, these approaches cannot accommodate complicated environments with obstacles, which restricts their applications. This paper considers the surrounding stationary obstacles and proposes a parallel self-assembly planning algorithm named SAPOA. With this algorithm, modular robots can avoid immovable obstacles when performing docking actions, which adapts the parallel self-assembly process to complex scenes. To validate the efficiency and scalability, we have designed 25 distinct grid maps with different obstacle configurations to simulate the algorithm. From the results compared to the existing parallel self-assembly algorithms, our algorithm shows a significantly higher success rate, which is more than 80%. For verification in real-world applications, a multi-agent hardware testbed system is developed. The algorithm is successfully deployed on four omnidirectional unmanned surface vehicles, CuBoats. The navigation strategy that translates the discrete planner, SAPOA, to the continuous controller on the CuBoats is presented. The algorithm's feasibility and flexibility were demonstrated through successful self-assembly experiments on 5 maps with varying obstacle configurations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Y. Jin and Y. Meng, “Morphogenetic robotics: An emerging new field in developmental robotics,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 2, pp. 145–160, 2010.
  2. B. Gheneti, S. Park, R. Kelly, D. Meyers, P. Leoni, C. Ratti, and D. Rus, “Trajectory planning for the shapeshifting of autonomous surface vessels,” in 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS).   IEEE, 2019, pp. 76–82.
  3. K. H. Petersen, N. Napp, R. Stuart-Smith, D. Rus, and M. Kovac, “A review of collective robotic construction,” Science Robotics, vol. 4, no. 28, p. eaau8479, 2019.
  4. W. Wang, L. A. Mateos, S. Park, P. Leoni, B. Gheneti, F. Duarte, C. Ratti, and D. Rus, “Design, modeling, and nonlinear model predictive tracking control of a novel autonomous surface vehicle,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 6189–6196.
  5. V. Ganesan and M. Chitre, “On stochastic self-assembly of underwater robots,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 251–258, 2016.
  6. N. Gandhi, D. Saldana, V. Kumar, and L. T. X. Phan, “Self-reconfiguration in response to faults in modular aerial systems,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2522–2529, 2020.
  7. J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Campbell, “An integrated system for perception-driven autonomy with modular robots,” Science Robotics, vol. 3, no. 23, 2018.
  8. G. Liang, H. Luo, M. Li, H. Qian, and T. L. Lam, “Freebot: A freeform modular self-reconfigurable robot with arbitrary connection point-design and implementation,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 6506–6513.
  9. Y. Ozkan-Aydin and D. I. Goldman, “Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks,” Science Robotics, vol. 6, no. 56, p. eabf1628, 2021.
  10. W. Wang, Z. Wang, L. Mateos, K. W. Huang, M. Schwager, C. Ratti, and D. Rus, “Distributed motion control for multiple connected surface vessels,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 11 658–11 665.
  11. H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig, T. Kumar, T. Uras, H. Xu, C. Tovey, and G. Sharon, “Overview: Generalizations of multi-agent path finding to real-world scenarios,” arXiv preprint arXiv:1702.05515, 2017.
  12. H. Lv and C. Lu, “An assembly sequence planning approach with a discrete particle swarm optimization algorithm,” The International Journal of Advanced Manufacturing Technology, vol. 50, no. 5, pp. 761–770, 2010.
  13. G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nolfi, “Self-organized coordinated motion in groups of physically connected robots,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 1, pp. 224–239, 2007.
  14. M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198, pp. 795–799, 2014.
  15. H.-a. Yang, J. Kong, S. Cao, X. Duan, and S. Zhang, “A distributed self-assembly approach for hollow shape in swarm robotics,” The International Journal of Advanced Manufacturing Technology, vol. 108, no. 7, pp. 2213–2230, 2020.
  16. J. Werfel and R. Nagpal, “Three-dimensional construction with mobile robots and modular blocks,” The International Journal of Robotics Research, vol. 27, no. 3-4, pp. 463–479, 2008.
  17. C. Liu, Q. Lin, H. Kim, and M. Yim, “Parallel self-assembly with smores-ep, a modular robot,” in 2020 International Conference on Robotics and Automation (ICRA), Paris, France, May 2020.
  18. M. Jílek, K. Stránská, M. Somr, M. Kulich, J. Zeman, and L. Přeučil, “Self-stabilizing self-assembly,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9763–9769, 2022.
  19. M. Matsumoto and S. Hashimoto, “Passive self-replication of millimeter-scale parts,” IEEE Transactions on Automation Science and Engineering, vol. 6, no. 2, pp. 385–391, 2009.
  20. A. Bhattacharjee, Y. Lu, A. T. Becker, and M. Kim, “Magnetically controlled modular cubes with reconfigurable self-assembly and disassembly,” IEEE Transactions on Robotics, 2021.
  21. Q. Wang, L. Yang, and L. Zhang, “Micromanipulation using reconfigurable self-assembled magnetic droplets with needle guidance,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 2, pp. 759–771, 2021.
  22. E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-organizing robotic systems,” IEEE Transactions on Automatic Control, vol. 51, no. 6, pp. 949–962, 2006.
  23. H.-X. Wei, Q. Mao, Y. Guan, and Y.-D. Li, “A centroidal voronoi tessellation based intelligent control algorithm for the self-assembly path planning of swarm robots,” Expert Systems with Applications, vol. 85, pp. 261–269, 2017.
  24. D. Saldana, B. Gabrich, M. Whitzer, A. Prorok, M. F. Campos, M. Yim, and V. Kumar, “A decentralized algorithm for assembling structures with modular robots,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 2736–2743.
  25. L. Zhang, Z.-H. Fu, H. Liu, Q. Liu, X. Ji, and H. Qian, “An efficient parallel self-assembly planning algorithm for modular robots in environments with obstacles,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 10 038–10 044.
  26. S. Park, M. Cap, J. Alonso-Mora, C. Ratti, and D. Rus, “Social trajectory planning for urban autonomous surface vessels,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 452–465, 2020.
  27. J. Paulos, N. Eckenstein, T. Tosun, J. Seo, J. Davey, J. Greco, V. Kumar, and M. Yim, “Automated self-assembly of large maritime structures by a team of robotic boats,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 958–968, 2015.
  28. UN-Habitat, “Un-habitat and partners unveil oceanix busan, the world’s first prototype floating city,” 2022. [Online]. Available: https://unhabitat.org/un-habitat-and-partners-unveil-oceanix-busan-the-worlds-first-prototype-floating-city
  29. J. Seo, M. Yim, and V. Kumar, “Assembly sequence planning for constructing planar structures with rectangular modules,” in 2016 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 5477–5482.
  30. W. Wang, B. Gheneti, L. A. Mateos, F. Duarte, C. Ratti, and D. Rus, “Roboat: An autonomous surface vehicle for urban waterways,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 6340–6347.
  31. G. Knizhnik and M. Yim, “Docking and undocking a modular underactuated oscillating swimming robot,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6754–6760.
  32. D. Saldana, B. Gabrich, G. Li, M. Yim, and V. Kumar, “Modquad: The flying modular structure that self-assembles in midair,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 691–698.
  33. D. Saldana, P. M. Gupta, and V. Kumar, “Design and control of aerial modules for inflight self-disassembly,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3410–3417, 2019.
  34. R. Hoffman, “Automated assembly in a csg domain,” in 1989 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 1989, pp. 210–211.
  35. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  36. H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
  37. S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji, “M-tran: Self-reconfigurable modular robotic system,” IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, pp. 431–441, 2002.
  38. Đula Nađ, N. Mišković, and F. Mandić, “Navigation, guidance and control of an overactuated marine surface vehicle,” Annual Reviews in Control, vol. 40, pp. 172–181, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1367578815000474
  39. F. Vallegra, D. Mateo, G. Tokić, R. Bouffanais, and D. K. Yue, “Gradual collective upgrade of a swarm of autonomous buoys for dynamic ocean monitoring,” in OCEANS 2018 MTS/IEEE Charleston.   IEEE, 2018, pp. 1–7.
  40. A. McCormack and K. Godfrey, “Rule-based autotuning based on frequency domain identification,” IEEE Transactions on Control Systems Technology, vol. 6, no. 1, pp. 43–61, 1998.
Citations (2)

Summary

We haven't generated a summary for this paper yet.