Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Self-assembly for Modular USVs with Diverse Docking Mechanism Layouts (2401.15399v1)

Published 27 Jan 2024 in cs.RO

Abstract: Self-assembly enables multi-robot systems to merge diverse capabilities and accomplish tasks beyond the reach of individual robots. Incorporating varied docking mechanisms layouts (DMLs) can enhance robot versatility or reduce costs. However, assembling multiple heterogeneous robots with diverse DMLs is still a research gap. This paper addresses this problem by introducing CuBoat, an omnidirectional unmanned surface vehicle (USV). CuBoat can be equipped with or without docking systems on its four sides to emulate heterogeneous robots. We implement a multi-robot system based on multiple CuBoats. To enhance maneuverability, a linear active disturbance rejection control (LADRC) scheme is proposed. Additionally, we present a generalized parallel self-assembly planning algorithm for efficient assembly among CuBoats with different DMLs. Validation is conducted through simulation within 2 scenarios across 4 distinct maps, demonstrating the performance of the self-assembly planning algorithm. Moreover, trajectory tracking tests confirm the effectiveness of the LADRC controller. Self-assembly experiments on 5 maps with different target structures affirm the algorithm's feasibility and generality. This study advances robotic self-assembly, enabling multi-robot systems to collaboratively tackle complex tasks beyond the capabilities of individual robots.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. A. C. Ekblaw, “Self-aware self-assembly for space architecture: growth paradigms for in-space manufacturing,” Thesis, 2020.
  2. S. Park, M. Cap, J. Alonso-Mora, C. Ratti, and D. Rus, “Social trajectory planning for urban autonomous surface vessels,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 452–465, 2021.
  3. K. H. Petersen, N. Napp, R. Stuart-Smith, D. Rus, and M. Kovac, “A review of collective robotic construction,” Science Robotics, vol. 4, no. 28, p. eaau8479, 2019.
  4. A. Z. Salvi, R. Simoni, and H. Simas, “Assembly sequence planning for shape heterogeneous modular robot systems,” in International Symposiu on Multibody Systems and Mechatronics.   Springer, 2017, pp. 128–137.
  5. Y. Liu, G. Li, H. Lu, Y. Yang, Z. Liu, W. Shang, and Y. Shen, “Magnetically actuated heterogeneous microcapsule-robot for the construction of 3d bioartificial architectures,” ACS Applied Materials & Interfaces, vol. 11, no. 29, pp. 25 664–25 673, 2019.
  6. I. Lončar, A. Babić, B. Arbanas, G. Vasiljević, T. Petrović, S. Bogdan, and N. Mišković, “A heterogeneous robotic swarm for long-term monitoring of marine environments,” Applied Sciences, vol. 9, no. 7, p. 1388, 2019.
  7. E. Narváez, A. A. Ravankar, A. Ravankar, T. Emaru, and Y. Kobayashi, “Autonomous vtol-uav docking system for heterogeneous multirobot team,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–18, 2020.
  8. W. Liu and A. F. Winfield, “Self-assembly in heterogeneous modular robots,” in Distributed Autonomous Robotic Systems: The 11th International Symposium.   Springer, 2014, pp. 219–232.
  9. S. Yi, Z. Temel, and K. Sycara, “Configuration control for physical coupling of heterogeneous robot swarms,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 4268–4274.
  10. C. Wang and B. Wang, “Large floating structures,” Ocean Engineering & Oceanography, vol. 3, 2015.
  11. D. Saldana, B. Gabrich, M. Whitzer, A. Prorok, M. F. Campos, M. Yim, and V. Kumar, “A decentralized algorithm for assembling structures with modular robots,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 2736–2743.
  12. J. Werfel, D. Ingber, and R. Nagpal, “Collective construction of environmentally-adaptive structures,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2007, pp. 2345–2352.
  13. J. Werfel and R. Nagpal, “Three-dimensional construction with mobile robots and modular blocks,” The International Journal of Robotics Research, vol. 27, no. 3-4, pp. 463–479, 2008.
  14. R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous self-assembly in swarm-bots,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1115–1130, 2006.
  15. G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nolfi, “Self-organized coordinated motion in groups of physically connected robots,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 1, pp. 224–239, 2007.
  16. M. Haire, X. Xu, L. Alboul, J. Penders, and H. Zhang, “Ship hull repair using a swarm of autonomous underwater robots: A self-assembly algorithm,” in 2019 European Conference on Mobile Robots (ECMR).   IEEE, 2019, pp. 1–6.
  17. H.-a. Yang, J. Kong, S. Cao, X. Duan, and S. Zhang, “A distributed self-assembly approach for hollow shape in swarm robotics,” The International Journal of Advanced Manufacturing Technology, vol. 108, no. 7, pp. 2213–2230, 2020.
  18. T. Knychala Tucci, B. Piranda, and J. Bourgeois, “A distributed self-assembly planning algorithm for modular robots,” in International Conference on Autonomous Agents and Multiagent Systems, Stockholm, Sweden, Jul. 2018. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02182793
  19. C. Liu, Q. Lin, H. Kim, and M. Yim, “Parallel self-assembly with smores-ep, a modular robot,” in 2020 International Conference on Robotics and Automation (ICRA).   Paris, France: IEEE, May 2020.
  20. J. Seo, M. Yim, and V. Kumar, “Assembly planning for planar structures of a brick wall pattern with rectangular modular robots,” in 2013 IEEE International Conference on Automation Science and Engineering (CASE).   IEEE, 2013, pp. 1016–1021.
  21. M. Jílek, K. Stránská, M. Somr, M. Kulich, J. Zeman, and L. Přeučil, “Self-stabilizing self-assembly,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9763–9769, 2022.
  22. H.-a. Yang, S. Cao, L. Bai, Z. Zhang, and J. Kong, “A distributed and parallel self-assembly approach for swarm robotics,” Robotics and Autonomous Systems, vol. 118, pp. 80–92, 2019.
  23. E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-organizing robotic systems,” IEEE Transactions on Automatic Control, vol. 51, no. 6, pp. 949–962, 2006.
  24. E. Klavins, “Programmable self-assembly,” IEEE Control Systems Magazine, vol. 27, no. 4, pp. 43–56, 2007.
  25. H.-X. Wei, Q. Mao, Y. Guan, and Y.-D. Li, “A centroidal voronoi tessellation based intelligent control algorithm for the self-assembly path planning of swarm robots,” Expert Systems with Applications, vol. 85, pp. 261–269, 2017.
  26. L. Zhang, Z.-H. Fu, H. Liu, Q. Liu, X. Ji, and H. Qian, “An efficient parallel self-assembly planning algorithm for modular robots in environments with obstacles,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 10 038–10 044.
  27. L. Zhang, Y. Huang, Z. Cao, Y. Jiao, and H. Qian, “Parallel self-assembly for a multi-usv system on water surface with obstacles,” arXiv preprint arXiv:2307.00085, 2023.
  28. Đula Nađ, N. Mišković, and F. Mandić, “Navigation, guidance and control of an overactuated marine surface vehicle,” Annual Reviews in Control, vol. 40, pp. 172–181, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1367578815000474
  29. F. Vallegra, D. Mateo, G. Tokić, R. Bouffanais, and D. K. Yue, “Gradual collective upgrade of a swarm of autonomous buoys for dynamic ocean monitoring,” in OCEANS 2018 MTS/IEEE Charleston.   IEEE, 2018, pp. 1–7.
  30. A. S. McCormack and K. R. Godfrey, “Rule-based autotuning based on frequency domain identification,” IEEE Transactions on Control Systems Technology, vol. 6, no. 1, pp. 43–61, 1998.
Citations (1)

Summary

We haven't generated a summary for this paper yet.