Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Evacuee Models from Robot-Guided Emergency Evacuation Experiments (2306.17824v1)

Published 30 Jun 2023 in cs.RO

Abstract: Recent research has examined the possibility of using robots to guide evacuees to safe exits during emergencies. Yet, there are many factors that can impact a person's decision to follow a robot. Being able to model how an evacuee follows an emergency robot guide could be crucial for designing robots that effectively guide evacuees during an emergency. This paper presents a method for developing realistic and predictive human evacuee models from physical human evacuation experiments. The paper analyzes the behavior of 14 human subjects during physical robot-guided evacuation. We then use the video data to create evacuee motion models that predict the person's future positions during the emergency. Finally, we validate the resulting models by running a k-fold cross-validation on the data collected during physical human subject experiments. We also present performance results of the model using data from a similar simulated emergency evacuation experiment demonstrating that these models can serve as a tool to predict evacuee behavior in novel evacuation simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. M. Nayyar and A. R. Wagner, “Effective robot evacuation strategies in emergencies,” in 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2019, pp. 1–6.
  2. M. Nayyar, Z. Zoloty, C. McFarland, and A. R. Wagner, “Exploring the effect of explanations during robot-guided emergency evacuation,” in Social Robotics.   Springer International Publishing, 2020, pp. 13–22.
  3. P. Robinette, W. Li, R. Allen, A. M. Howard, and A. R. Wagner, “Overtrust of robots in emergency evacuation scenarios,” in Human-Robot Interaction (HRI), 2016 11th ACM/IEEE International Conference on.   IEEE, 2016, pp. 101–108.
  4. D. A. Shell and M. J. Matarić, “Insights toward robot-assisted evacuation,” Advanced Robotics, vol. 19, no. 8, pp. 797–818, 2005.
  5. Y. Wang, M. Kyriakidis, and V. N. Dang, “Incorporating human factors in emergency evacuation–an overview of behavioral factors and models,” International Journal of Disaster Risk Reduction, vol. 60, p. 102254, 2021.
  6. P. Gantt and R. Gantt, “Disaster psychology: Dispelling the myths of panic,” Professional Safety, vol. 57, no. 08, pp. 42–49, 2012.
  7. H. C. Vorst, “Evacuation models and disaster psychology,” Procedia Engineering, vol. 3, pp. 15–21, 2010.
  8. N. Verdière, V. Lanza, R. Charrier, D. Provitolo, E. Dubos-Paillard, C. Bertelle, and M. Aziz-Alaoui, “Mathematical modeling of human behaviors during catastrophic events,” in International Conference on Complex Systems and Applications Le Havre, 23 au 26 juin 2014., 2014, pp. 67–74.
  9. D. Provitolo, E. Dubos-Paillard, and J. P. Müller, “Emergent human behaviour during a disaster: thematic# versus# complex systems approaches,” 2011.
  10. X. Pan, C. S. Han, K. Dauber, and K. H. Law, “A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations,” Ai & Society, vol. 22, no. 2, pp. 113–132, 2007.
  11. D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of escape panic,” Nature, vol. 407, no. 6803, p. 487, 2000.
  12. P. Goatin, R. M. Colombo, and M. D. Rosini, “A macroscopic model for pedestrian flows in panic situations,” in 4th Polish-Japan Days, vol. 32, 2009, pp. 255–272.
  13. X. Song, Q. Zhang, Y. Sekimoto, and R. Shibasaki, “Prediction of human emergency behavior and their mobility following large-scale disaster,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.   ACM, 2014, pp. 5–14.
  14. X. Song, R. Shibasaki, N. J. Yuan, X. Xie, T. Li, and R. Adachi, “Deepmob: Learning deep knowledge of human emergency behavior and mobility from big and heterogeneous data,” ACM Transactions on Information Systems (TOIS), vol. 35, no. 4, p. 41, 2017.
  15. N. Golshani, R. Shabanpour, A. Mohammadian, J. Auld, and H. Ley, “Evacuation decision behavior for no-notice emergency events,” Transportation research part D: transport and environment, vol. 77, pp. 364–377, 2019.
  16. R. Lovreglio, E. Ronchi, and D. Borri, “The validation of evacuation simulation models through the analysis of behavioural uncertainty,” Reliability Engineering & System Safety, vol. 131, pp. 166–174, 2014.
  17. C. Liu, Z.-l. Mao, and Z.-m. Fu, “Emergency evacuation model and algorithm in the building with several exits,” Procedia Engineering, vol. 135, pp. 12–18, 2016.
  18. S. Wei-Guo, Y. Yan-Fei, W. Bing-Hong, and F. Wei-Cheng, “Evacuation behaviors at exit in ca model with force essentials: A comparison with social force model,” Physica A: Statistical Mechanics and its Applications, vol. 371, no. 2, pp. 658–666, 2006.
  19. J. Wan, J. Sui, and H. Yu, “Research on evacuation in the subway station in china based on the combined social force model,” Physica A: Statistical Mechanics and its Applications, vol. 394, pp. 33–46, 2014.
  20. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  21. H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “RMPE: Regional multi-person pose estimation,” in ICCV, 2017.
  22. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
  23. G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, TaoXie, K. Michael, J. Fang, imyhxy, Lorna, C. Wong, Z. Yifu, A. V, D. Montes, Z. Wang, C. Fati, J. Nadar, Laughing, UnglvKitDe, tkianai, yxNONG, P. Skalski, A. Hogan, M. Strobel, M. Jain, L. Mammana, and xylieong, “ultralytics/yolov5: v6.2 - yolov5 classification models, apple m1, reproducibility, clearml and deci.ai integrations,” Aug. 2022.
  24. A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures.” Analytical chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.
  25. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
  26. C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A comparative analysis of gradient boosting algorithms,” Artificial Intelligence Review, vol. 54, pp. 1937–1967, 2021.
Citations (3)

Summary

We haven't generated a summary for this paper yet.