Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Robot-Guided Crowd Evacuation: Two-Scale Modeling and Control (2302.14752v2)

Published 28 Feb 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Emergency evacuation describes a complex situation involving time-critical decision-making by evacuees. Mobile robots are being actively explored as a potential solution to provide timely guidance. In this work, we study a robot-guided crowd evacuation problem where a small group of robots is used to guide a large human crowd to safe locations. The challenge lies in how to use micro-level human-robot interactions to indirectly influence a population that significantly outnumbers the robots to achieve the collective evacuation objective. To address the challenge, we follow a two-scale modeling strategy and explore hydrodynamic models, which consist of a family of microscopic social force models that describe how human movements are locally affected by other humans, the environment, and robots, and associated macroscopic equations for the temporal and spatial evolution of the crowd density and flow velocity. We design controllers for the robots such that they not only automatically explore the environment (with unknown dynamic obstacles) to cover it as much as possible, but also dynamically adjust the directions of their local navigation force fields based on the real-time macrostates of the crowd to guide the crowd to a safe location. We prove the stability of the proposed evacuation algorithm and conduct extensive simulations to investigate the performance of the algorithm with different combinations of human numbers, robot numbers, and obstacle settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. N. Bryner, D. Madrzykowski, and W. Grosshandler, “Reconstructing the station nightclub fire–computer modeling of the fire growth and spread,” in International interflam conference, 11th proceedings, 2007, pp. 3–5.
  2. P. Robinette, P. A. Vela, and A. M. Howard, “Information propagation applied to robot-assisted evacuation,” in Robotics and Automation (ICRA), 2012 IEEE International Conference on.   IEEE, 2012, pp. 856–861.
  3. A. R. Wagner, “Robot-guided evacuation as a paradigm for human-robot interaction research,” Frontiers in Robotics and AI, vol. 8, 2021.
  4. B. Tang, C. Jiang, H. He, and Y. Guo, “Human mobility modeling for robot-assisted evacuation in complex indoor environments,” IEEE Transactions on Human-Machine Systems, vol. 46, no. 5, pp. 694–707, 2016.
  5. N. Bellomo and C. Dogbe, “On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,” SIAM review, vol. 53, no. 3, pp. 409–463, 2011.
  6. M. Haghani, “The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact,” Physica A: Statistical Mechanics and its Applications, vol. 580, p. 126145, 2021.
  7. E. Cristiani, M. Menci, A. Malagnino, and G. Amaro, “An all-densities pedestrian simulator based on a dynamic evaluation of the interpersonal distances,” Physica A: Statistical Mechanics and its Applications, vol. 616, p. 128625, 2023.
  8. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  9. X. Chen, M. Treiber, V. Kanagaraj, and H. Li, “Social force models for pedestrian traffic–state of the art,” Transport reviews, vol. 38, no. 5, pp. 625–653, 2018.
  10. D. Helbing, I. J. Farkas, P. Molnar, and T. Vicsek, “Simulation of pedestrian crowds in normal and evacuation situations,” Pedestrian and evacuation dynamics, vol. 21, no. 2, pp. 21–58, 2002.
  11. A. Garrell, A. Sanfeliu, and F. Moreno-Noguer, “Discrete time motion model for guiding people in urban areas using multiple robots,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2009, pp. 486–491.
  12. C. Jiang, Z. Ni, Y. Guo, and H. He, “Robot-assisted pedestrian regulation in an exit corridor,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2016, pp. 815–822.
  13. Z. Yuan, T. Zheng, M. Nayyar, A. R. Wagner, H. Lin, and M. Zhu, “Multi-robot-assisted human crowd control for emergency evacuation: A stabilization approach,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 4051–4056.
  14. E. Boukas, I. Kostavelis, A. Gasteratos, and G. C. Sirakoulis, “Robot guided crowd evacuation,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 739–751, 2014.
  15. M. Zhou, H. Dong, P. A. Ioannou, Y. Zhao, and F.-Y. Wang, “Guided crowd evacuation: approaches and challenges,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 5, pp. 1081–1094, 2019.
  16. P. Robinette, A. R. Wagner, and A. M. Howard, “Investigating human-robot trust in emergency scenarios: methodological lessons learned,” in Robust Intelligence and Trust in Autonomous Systems.   Springer, 2016, pp. 143–166.
  17. M. Nayyar and A. R. Wagner, “Effective robot evacuation strategies in emergencies,” in 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN).   IEEE, 2019, pp. 1–6.
  18. R. L. Hughes, “A continuum theory for the flow of pedestrians,” Transportation Research Part B: Methodological, vol. 36, no. 6, pp. 507–535, 2002.
  19. N. Bellomo and C. Dogbe, “On the modelling crowd dynamics from scaling to hyperbolic macroscopic models,” Mathematical Models and Methods in Applied Sciences, vol. 18, no. supp01, pp. 1317–1345, 2008.
  20. R. Borsche, A. Klar, and F. Schneider, “Numerical methods for mean-field and moment models for pedestrian flow,” in Crowd Dynamics, Volume 1.   Springer, 2018, pp. 167–209.
  21. E. Cristiani, B. Piccoli, and A. Tosin, “Multiscale Modeling of Granular Flows with Application to Crowd Dynamics,” Multiscale Modeling & Simulation, vol. 9, no. 1, pp. 155–182, Jan. 2011.
  22. M. Moussaïd, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, “The walking behaviour of pedestrian social groups and its impact on crowd dynamics,” PloS one, vol. 5, no. 4, p. e10047, 2010.
  23. C. Von Krüchten and A. Schadschneider, “Empirical study on social groups in pedestrian evacuation dynamics,” Physica A: Statistical Mechanics and its Applications, vol. 475, pp. 129–141, 2017.
  24. T. Zheng, Q. Han, and H. Lin, “Transporting robotic swarms via mean-field feedback control,” IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 4170–4177, 2021.
  25. M. Fornasier, B. Piccoli, and F. Rossi, “Mean-field sparse optimal control,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, no. 2028, p. 20130400, 2014.
  26. A. Borzi and S. Wongkaew, “Modeling and control through leadership of a refined flocking system,” Mathematical Models and Methods in Applied Sciences, vol. 25, no. 02, pp. 255–282, 2015.
  27. T. Zheng, Z. Yuan, M. Nayyar, A. R. Wagner, M. Zhu, and H. Lin, “Multi-robot-assisted human crowd evacuation using navigation velocity fields,” in 2022 61st IEEE Conference on Decision and Control (CDC).   IEEE, 2022.
  28. P. Robinette, A. R. Wagner, and A. M. Howard, “Assessment of robot guidance modalities conveying instructions to humans in emergency situations,” in The 23rd IEEE International Symposium on Robot and Human Interactive Communication.   IEEE, 2014, pp. 1043–1049.
  29. J. A. Carrillo and Y.-P. Choi, “Mean-field limits: from particle descriptions to macroscopic equations,” Archive for Rational Mechanics and Analysis, vol. 241, no. 3, pp. 1529–1573, 2021.
  30. J. A. Carrillo, E. Feireisl, P. Gwiazda, and A. Świerczewska-Gwiazda, “Weak solutions for euler systems with non-local interactions,” Journal of the London Mathematical Society, vol. 95, no. 3, pp. 705–724, 2017.
  31. A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem,” in Distributed Autonomous Robotic Systems 5.   Springer, 2002, pp. 299–308.
  32. K. Elamvazhuthi and S. Berman, “Mean-field models in swarm robotics: a survey,” Bioinspiration & Biomimetics, vol. 15, no. 1, p. 015001, 2019.
  33. M. Nayyar, G. Paik, Z. Yuan, T. Zheng, M. Zhu, H. Lin, and A. R. Wagner, “Learning evacuee models from robot-guided emergency evacuation experiments,” arXiv preprint arXiv:2306.17824, 2023.
  34. T. Zheng, Q. Han, and H. Lin, “Pde-based dynamic density estimation for large-scale agent systems,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 541–546, 2020.
  35. ——, “Distributed mean-field density estimation for large-scale systems,” IEEE Transactions on Automatic Control, vol. 67, no. 10, pp. 5218–5229, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.