Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unscented Optimal Control for 3D Coverage Planning with an Autonomous UAV Agent (2306.17588v1)

Published 30 Jun 2023 in cs.RO, cs.SY, and eess.SY

Abstract: We propose a novel probabilistically robust controller for the guidance of an unmanned aerial vehicle (UAV) in coverage planning missions, which can simultaneously optimize both the UAV's motion, and camera control inputs for the 3D coverage of a given object of interest. Specifically, the coverage planning problem is formulated in this work as an optimal control problem with logical constraints to enable the UAV agent to jointly: a) select a series of discrete camera field-of-view states which satisfy a set of coverage constraints, and b) optimize its motion control inputs according to a specified mission objective. We show how this hybrid optimal control problem can be solved with standard optimization tools by converting the logical expressions in the constraints into equality/inequality constraints involving only continuous variables. Finally, probabilistic robustness is achieved by integrating the unscented transformation to the proposed controller, thus enabling the design of robust open-loop coverage plans which take into account the future posterior distribution of the UAV's state inside the planning horizon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. S. Papaioannou, P. Kolios, C. G. Panayiotou, and M. M. Polycarpou, “Cooperative simultaneous tracking and jamming for disabling a rogue drone,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, pp. 7919–7926.
  2. Q. Wu, W. Mei, and R. Zhang, “Safeguarding wireless network with uavs: A physical layer security perspective,” IEEE Wireless Communications, vol. 26, no. 5, pp. 12–18, 2019.
  3. S. Papaioannou, P. Kolios, and G. Ellinas, “Downing a rogue drone with a team of aerial radio signal jammers,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, pp. 2555–2562.
  4. ——, “Distributed estimation and control for jamming an aerial target with multiple agents,” IEEE Transactions on Mobile Computing, 2022, doi:10.1109/TMC.2022.3207589.
  5. S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and M. M. Polycarpou, “Towards Automated 3D Search Planning for Emergency Response Missions,” Journal of Intelligent & Robotic Systems, vol. 103, no. 1, pp. 1–19, 2021.
  6. ——, “3D Trajectory Planning for UAV-based Search Missions: An Integrated Assessment and Search Planning Approach,” in 2021 International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2021, pp. 517–526.
  7. L. Li, X. Wen, Z. Lu, W. Jing, and H. Zhang, “Energy-efficient multi-uavs deployment and movement for emergency response,” IEEE Communications Letters, vol. 25, no. 5, pp. 1625–1629, 2021.
  8. E. Skjong, S. A. Nundal, F. S. Leira, and T. A. Johansen, “Autonomous search and tracking of objects using model predictive control of unmanned aerial vehicle and gimbal: Hardware-in-the-loop simulation of payload and avionics,” in 2015 International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2015, pp. 904–913.
  9. S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and M. M. Polycarpou, “A Cooperative Multi-Agent Probabilistic Framework for Search and Track Missions,” IEEE Transactions on Control of Network Systems, 2020.
  10. ——, “Jointly-optimized searching and tracking with random finite sets,” IEEE Transactions on Mobile Computing, vol. 19, no. 10, pp. 2374–2391, 2020.
  11. T. Kopfstedt, M. Mukai, M. Fujita, and C. Ament, “Control of formations of uavs for surveillance and reconnaissance missions,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 5161–5166, 2008.
  12. S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and M. M. Polycarpou, “Probabilistic search and track with multiple mobile agents,” in 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 2019, pp. 253–262.
  13. R. Shrestha, R. Bajracharya, and S. Kim, “6g enabled unmanned aerial vehicle traffic management: A perspective,” IEEE Access, vol. 9, pp. 91 119–91 136, 2021.
  14. C. Vitale, S. Papaioannou, P. Kolios, and G. Ellinas, “Autonomous 4d trajectory planning for dynamic and flexible air traffic management,” Journal of Intelligent & Robotic Systems, vol. 106, no. 1, p. 11, 2022.
  15. A. Shukla, H. Xiaoqian, and H. Karki, “Autonomous tracking and navigation controller for an unmanned aerial vehicle based on visual data for inspection of oil and gas pipelines,” in 2016 16th international conference on control, automation and systems (ICCAS).   IEEE, 2016, pp. 194–200.
  16. X. Luo, X. Li, Q. Yang, F. Wu, D. Zhang, W. Yan, and Z. Xi, “Optimal path planning for uav based inspection system of large-scale photovoltaic farm,” in 2017 Chinese automation congress (CAC).   IEEE, 2017, pp. 4495–4500.
  17. F. Stoican, I. Prodan, E. I. Grøtli, and N. T. Nguyen, “Inspection trajectory planning for 3d structures under a mixed-integer framework,” in 2019 IEEE 15th International Conference on Control and Automation (ICCA), 2019, pp. 1349–1354.
  18. S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and M. M. Polycarpou, “Uav-based receding horizon control for 3d inspection planning,” in 2022 International Conference on Unmanned Aircraft Systems (ICUAS), 2022, pp. 1121–1130.
  19. T. M. Cabreira, L. B. Brisolara, and F. J. Paulo R, “Survey on coverage path planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, p. 4, 2019.
  20. R. P. Anderson, E. Bakolas, D. Milutinović, and P. Tsiotras, “Optimal feedback guidance of a small aerial vehicle in a stochastic wind,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 4, pp. 975–985, 2013.
  21. S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear systems,” in Signal processing, sensor fusion, and target recognition VI, vol. 3068.   Spie, 1997, pp. 182–193.
  22. E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.
  23. T. M. Cabreira, L. B. Brisolara, and P. R. Ferreira Jr., “Survey on coverage path planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, 2019.
  24. C. S. Tan, R. Mohd-Mokhtar, and M. R. Arshad, “A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms,” IEEE Access, vol. 9, pp. 119 310–119 342, 2021.
  25. A. Xu, C. Viriyasuthee, and I. Rekleitis, “Optimal complete terrain coverage using an unmanned aerial vehicle,” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 2513–2519.
  26. N. Karapetyan, K. Benson, C. McKinney, P. Taslakian, and I. Rekleitis, “Efficient multi-robot coverage of a known environment,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 1846–1852.
  27. H. Wang, H. Li, C. Zhang, S. He, and J. Liu, “A 3d coverage path planning approach for flying cameras in nature environment under photogrammetric constraints,” in 2017 36th Chinese Control Conference (CCC).   IEEE, 2017, pp. 6761–6766.
  28. I. Maza and A. Ollero, “Multiple uav cooperative searching operation using polygon area decomposition and efficient coverage algorithms,” in Distributed Autonomous Robotic Systems 6.   Springer, 2007, pp. 221–230.
  29. A. Renzaglia, L. Doitsidis, A. Martinelli, and E. B. Kosmatopoulos, “Multi-robot 3d coverage of unknown terrains,” in 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 2046–2051.
  30. L. Paull, M. Seto, and H. Li, “Area coverage planning that accounts for pose uncertainty with an auv seabed surveying application,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 6592–6599.
  31. Y.-S. Jung, K.-W. Lee, S.-Y. Lee, M. H. Choi, and B.-H. Lee, “An efficient underwater coverage method for multi-auv with sea current disturbances,” International Journal of Control, Automation and Systems, vol. 7, no. 4, pp. 615–629, 2009.
  32. N. Dadkhah and B. Mettler, “Survey of motion planning literature in the presence of uncertainty: Considerations for uav guidance,” Journal of Intelligent & Robotic Systems, vol. 65, no. 1, pp. 233–246, 2012.
  33. W. Jing, J. Polden, W. Lin, and K. Shimada, “Sampling-based view planning for 3d visual coverage task with unmanned aerial vehicle,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2016, pp. 1808–1815.
  34. C. Dornhege, A. Kleiner, and A. Kolling, “Coverage search in 3d,” in 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2013, pp. 1–8.
  35. B. Englot and F. Hover, “Sampling-based coverage path planning for inspection of complex structures,” Proceedings of the International Conference on Automated Planning and Scheduling, vol. 22, no. 1, May 2012.
  36. S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and M. M. Polycarpou, “Distributed search planning in 3-d environments with a dynamically varying number of agents,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, doi:10.1109/TSMC.2023.3240023.
  37. M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV coverage path planning under varying power constraints using deep reinforcement learning,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 1444–1449.
  38. G. Sanna, S. Godio, and G. Guglieri, “Neural Network Based Algorithm for Multi-UAV Coverage Path Planning,” in 2021 International Conference on Unmanned Aircraft Systems (ICUAS).   IEEE, 2021, pp. 1210–1217.
  39. S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and M. M. Polycarpou, “Integrated guidance and gimbal control for coverage planning with visibility constraints,” IEEE Transactions on Aerospace and Electronic Systems, 2022, doi:10.1109/TAES.2022.3199196.
  40. ——, “Integrated ray-tracing and coverage planning control using reinforcement learning,” in 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, pp. 7200–7207.
  41. G. Taubin, “3d rotations,” IEEE Computer Graphics and Applications, vol. 31, no. 6, pp. 84–89, 2011.
  42. P. Labatut, J.-P. Pons, and R. Keriven, “Efficient multi-view reconstruction of large-scale scenes using interest points, delaunay triangulation and graph cuts,” in 2007 IEEE 11th international conference on computer vision.   IEEE, 2007, pp. 1–8.
  43. P. Wang, Z. Wang, S. Xin, X. Gao, W. Wang, and C. Tu, “Restricted delaunay triangulation for explicit surface reconstruction,” ACM Transactions on Graphics (TOG), 2022.
  44. S. Julier, “The scaled unscented transformation,” in Proceedings of the 2002 American Control Conference, vol. 6, 2002, pp. 4555–4559 vol.6.
  45. J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
Citations (4)

Summary

We haven't generated a summary for this paper yet.