Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-Predictive Trajectory Generation for Aerial Search and Coverage (2403.05944v2)

Published 9 Mar 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This paper introduces a trajectory planning algorithm for search and coverage missions with an Unmanned Aerial Vehicle (UAV) based on an uncertainty map that represents prior knowledge of the target region, modeled by a Gaussian Mixture Model (GMM). The trajectory planning problem is formulated as an Optimal Control Problem (OCP), which aims to maximize the uncertainty reduction within a specified mission duration. However, this results in an intractable OCP whose objective functional cannot be expressed in closed form. To address this, we propose a Model Predictive Control (MPC) algorithm based on a relaxed formulation of the objective function to approximate the optimal solutions. This relaxation promotes efficient map exploration by penalizing overlaps in the UAV's visibility regions along the trajectory. The algorithm can produce efficient and smooth trajectories, and it can be efficiently implemented using standard Nonlinear Programming solvers, being suitable for real-time planning. Unlike traditional methods, which often rely on discretizing the mission space and using complex mixed-integer formulations, our approach is computationally efficient and easier to implement. The MPC algorithm is initially assessed in MATLAB, followed by Gazebo simulations and actual experimental tests conducted in an outdoor environment. The results demonstrate that the proposed strategy can generate efficient and smooth trajectories for search and coverage missions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48572–48634, 2019.
  2. M. Ghamari, P. Rangel, M. Mehrubeoglu, G. S. Tewolde, and R. S. Sherratt, “Unmanned aerial vehicle communications for civil applications: A review,” IEEE Access, vol. 10, pp. 102492–102531, 2022.
  3. P. Yao, Z. Xie, and P. Ren, “Optimal UAV route planning for coverage search of stationary target in river,” IEEE Transactions on Control Systems Technology, vol. 27, no. 2, pp. 822–829, 2017.
  4. F. Afghah, A. Razi, J. Chakareski, and J. Ashdown, “Wildfire monitoring in remote areas using autonomous unmanned aerial vehicles,” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 835–840, IEEE, 2019.
  5. N. Nigam, S. Bieniawski, I. Kroo, and J. Vian, “Control of multiple UAVs for persistent surveillance: Algorithm and flight test results,” IEEE Transactions on Control Systems Technology, vol. 20, no. 5, pp. 1236–1251, 2011.
  6. E. M. Lee, J. Choi, H. Lim, and H. Myung, “Real: Rapid exploration with active loop-closing toward large-scale 3d mapping using uavs,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4194–4198, IEEE, 2021.
  7. E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–1276, 2013.
  8. T. M. Cabreira, C. Di Franco, P. R. Ferreira, and G. C. Buttazzo, “Energy-aware spiral coverage path planning for uav photogrammetric applications,” IEEE Robotics and automation letters, vol. 3, no. 4, pp. 3662–3668, 2018.
  9. M. Torres, D. A. Pelta, J. L. Verdegay, and J. C. Torres, “Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction,” Expert Systems with Applications, vol. 55, pp. 441–451, 2016.
  10. E. U. Acar, H. Choset, and J. Y. Lee, “Sensor-based coverage with extended range detectors,” IEEE Transactions on Robotics, vol. 22, no. 1, pp. 189–198, 2006.
  11. Y. Jia, S. Zhou, Q. Zeng, C. Li, D. Chen, K. Zhang, L. Liu, and Z. Chen, “The UAV Path Coverage Algorithm Based on the Greedy Strategy and Ant Colony Optimization,” Electronics, vol. 11, no. 17, p. 2667, 2022.
  12. M.-H. Kim, H. Baik, and S. Lee, “Response threshold model based UAV search planning and task allocation,” Journal of Intelligent & Robotic Systems, vol. 75, pp. 625–640, 2014.
  13. E. J. Forsmo, E. I. Grøtli, T. I. Fossen, and T. A. Johansen, “Optimal search mission with unmanned aerial vehicles using mixed integer linear programming,” in 2013 International conference on unmanned aircraft systems (ICUAS), pp. 253–259, IEEE, 2013.
  14. P. Yao, H. Wang, and H. Ji, “Gaussian mixture model and receding horizon control for multiple uav search in complex environment,” Nonlinear Dynamics, vol. 88, pp. 903–919, 2017.
  15. J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), pp. 284–289, IEEE, 2004.
  16. R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,” IEEE robotics & automation magazine, vol. 19, no. 3, pp. 20–32, 2012.
  17. ”PX4 Autopilot User Guide”. Available online: PX4 Autopilot.
  18. J. Andersson, J. Åkesson, and M. Diehl, “Casadi: A symbolic package for automatic differentiation and optimal control,” in Recent advances in algorithmic differentiation, pp. 297–307, Springer, 2012.
  19. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 2006.
  20. S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to nonlinear mpc: bridging the gap via the real-time iteration,” International Journal of Control, vol. 93, no. 1, pp. 62–80, 2020.
  21. T. Oliveira, P. Trindade, D. Cabecinhas, P. Batista, and R. Cunha, “Rapid development and prototyping environment for testing of unmanned aerial vehicles,” in 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 191–196, IEEE, 2021.
  22. M. Jacinto, R. Cunha, and A. Pascoal, “Chemical spill encircling using a quadrotor and autonomous surface vehicles: A distributed cooperative approach,” Sensors, vol. 22, no. 6, p. 2178, 2022.
  23. M690B Wiki. Available online: M690B Wiki.

Summary

We haven't generated a summary for this paper yet.