Improving Primate Sounds Classification using Binary Presorting for Deep Learning (2306.16054v1)
Abstract: In the field of wildlife observation and conservation, approaches involving machine learning on audio recordings are becoming increasingly popular. Unfortunately, available datasets from this field of research are often not optimal learning material; Samples can be weakly labeled, of different lengths or come with a poor signal-to-noise ratio. In this work, we introduce a generalized approach that first relabels subsegments of MEL spectrogram representations, to achieve higher performances on the actual multi-class classification tasks. For both the binary pre-sorting and the classification, we make use of convolutional neural networks (CNN) and various data-augmentation techniques. We showcase the results of this approach on the challenging \textit{ComparE 2021} dataset, with the task of classifying between different primate species sounds, and report significantly higher Accuracy and UAR scores in contrast to comparatively equipped model baselines.
- Dietterich, T.G.: Ensemble methods in machine learning. In: International Workshop on Multiple Classifier Systems. pp. 1–15. Springer (2000)
- Pellegrini, T.: Deep-Learning-Based Central African Primate Species Classification with MixUp and SpecAugment. In: Proc. Interspeech 2021. pp. 456–460 (2021). https://doi.org/10.21437/Interspeech.2021-1911
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.