Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Non-Invertible Symmetries, Brane Dynamics, and Tachyon Condensation (2306.15783v2)

Published 27 Jun 2023 in hep-th

Abstract: We study the Symmetry Topological Field Theory in holography associated with 4d $\mathcal{N}=1$ Super Yang-Mills theory with gauge algebra $\mathfrak{su}(M)$. From this, all the bulk symmetry operators are computed and matched to various D-brane configurations. The fusion algebra of the operators emerges from brane dynamics. In particular, we show that the symmetry operators are purely determined from the center-of-mass modes of the branes. We identify the TQFT fusion coefficients with the relative motion of the branes. We also establish the origin of condensation defects, arising from fusion of non-invertible operators, as the consequence of tachyon condensation in brane-anti-brane pairs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (95)
  1. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
  2. D. Gaiotto and J. Kulp, “Orbifold groupoids,” JHEP 02 (2021) 132, arXiv:2008.05960 [hep-th].
  3. D. S. Freed, G. W. Moore, and C. Teleman, “Topological symmetry in quantum field theory,” arXiv:2209.07471 [hep-th].
  4. F. Apruzzi, F. Bonetti, I. n. G. Etxebarria, S. S. Hosseini, and S. Schafer-Nameki, “Symmetry TFTs from String Theory,” arXiv:2112.02092 [hep-th].
  5. I. Bah, F. Bonetti, R. Minasian, and E. Nardoni, “Anomalies of QFTs from M-theory and Holography,” JHEP 01 (2020) 125, arXiv:1910.04166 [hep-th].
  6. I. Bah, F. Bonetti, and R. Minasian, “Discrete and higher-form symmetries in SCFTs from wrapped M5-branes,” JHEP 03 (2021) 196, arXiv:2007.15003 [hep-th].
  7. I. Bah, F. Bonetti, R. Minasian, and P. Weck, “Anomaly Inflow Methods for SCFT Constructions in Type IIB,” JHEP 02 (2021) 116, arXiv:2002.10466 [hep-th].
  8. F. Apruzzi, I. Bah, F. Bonetti, and S. Schafer-Nameki, “Non-Invertible Symmetries from Holography and Branes,” arXiv:2208.07373 [hep-th].
  9. I. Garcίa Etxebarria, “Branes and Non-Invertible Symmetries,” Fortsch. Phys. 70 no. 11, (2022) 2200154, arXiv:2208.07508 [hep-th].
  10. J. J. Heckman, M. Hübner, E. Torres, and H. Y. Zhang, “The Branes Behind Generalized Symmetry Operators,” Fortsch. Phys. 71 no. 1, (2023) 2200180, arXiv:2209.03343 [hep-th].
  11. J. J. Heckman, M. Hubner, E. Torres, X. Yu, and H. Y. Zhang, “Top Down Approach to Topological Duality Defects,” arXiv:2212.09743 [hep-th].
  12. M. Etheredge, I. Garcia Etxebarria, B. Heidenreich, and S. Rauch, “Branes and symmetries for 𝒩=3𝒩3\mathcal{N}=3caligraphic_N = 3 S-folds,” arXiv:2302.14068 [hep-th].
  13. M. Cvetič, J. J. Heckman, M. Hübner, and E. Torres, “Fluxbranes, Generalized Symmetries, and Verlinde’s Metastable Monopole,” arXiv:2305.09665 [hep-th].
  14. M. Dierigl, J. J. Heckman, M. Montero, and E. Torres, “R7-Branes as Charge Conjugation Operators,” arXiv:2305.05689 [hep-th].
  15. V. Bashmakov, M. Del Zotto, A. Hasan, and J. Kaidi, “Non-invertible symmetries of class S theories,” JHEP 05 (2023) 225, arXiv:2211.05138 [hep-th].
  16. V. Bashmakov, M. Del Zotto, and A. Hasan, “On the 6d Origin of Non-invertible Symmetries in 4d,” arXiv:2206.07073 [hep-th].
  17. I. R. Klebanov and A. A. Tseytlin, “Gravity duals of supersymmetric SU(N) x SU(N+M) gauge theories,” Nucl. Phys. B 578 (2000) 123–138, arXiv:hep-th/0002159.
  18. I. R. Klebanov and M. J. Strassler, “Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities,” JHEP 08 (2000) 052, arXiv:hep-th/0007191.
  19. D. Belov and G. W. Moore, “Conformal blocks for AdS(5) singletons,” arXiv:hep-th/0412167.
  20. Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Gauss Law and Axions,” arXiv:2212.04499 [hep-th].
  21. Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Global Symmetries in the Standard Model,” arXiv:2205.05086 [hep-th].
  22. J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 no. 11, (2022) 111601, arXiv:2111.01141 [hep-th].
  23. I. Bah and E. Nardoni, “Structure of Anomalies of 4d SCFTs from M5-branes, and Anomaly Inflow,” JHEP 03 (2019) 024, arXiv:1803.00136 [hep-th].
  24. D. S. Freed, “Dirac charge quantization and generalized differential cohomology,” 11, 2000. arXiv:hep-th/0011220.
  25. J. H. C. Whitehead, “On simply connected, 4-dimensional polyhedra,” Commentarii Mathematici Helvetici 22 no. 1, (1949) 48–92.
  26. O. Aharony, N. Seiberg, and Y. Tachikawa, “Reading between the lines of four-dimensional gauge theories,” JHEP 08 (2013) 115, arXiv:1305.0318 [hep-th].
  27. F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
  28. C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, “Anomalies in the Space of Coupling Constants and Their Dynamical Applications II,” SciPost Phys. 8 no. 1, (2020) 002, arXiv:1905.13361 [hep-th].
  29. T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys. Rev. D 83 (2011) 084019, arXiv:1011.5120 [hep-th].
  30. E. Witten, “AdS / CFT correspondence and topological field theory,” JHEP 12 (1998) 012, arXiv:hep-th/9812012.
  31. S. Gukov, E. Martinec, G. W. Moore, and A. Strominger, “Chern-Simons gauge theory and the AdS(3) / CFT(2) correspondence,” in From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, pp. 1606–1647. 3, 2004. arXiv:hep-th/0403225.
  32. P.-S. Hsin, H. T. Lam, and N. Seiberg, “Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d,” SciPost Phys. 6 no. 3, (2019) 039, arXiv:1812.04716 [hep-th].
  33. C. Cordova and K. Ohmori, “Noninvertible Chiral Symmetry and Exponential Hierarchies,” Phys. Rev. X 13 no. 1, (2023) 011034, arXiv:2205.06243 [hep-th].
  34. A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].
  35. J. Polchinski, “Dirichlet Branes and Ramond-Ramond charges,” Phys. Rev. Lett. 75 (1995) 4724–4727, arXiv:hep-th/9510017.
  36. J. Polchinski, S. Chaudhuri, and C. V. Johnson, “Notes on D-branes,” arXiv:hep-th/9602052.
  37. M. R. Douglas, “Branes within branes,” NATO Sci. Ser. C 520 (1999) 267–275, arXiv:hep-th/9512077.
  38. D. S. Freed and E. Witten, “Anomalies in string theory with D-branes,” Asian J. Math. 3 (1999) 819, arXiv:hep-th/9907189.
  39. A. Kapustin, “D-branes in a topologically nontrivial B field,” Adv. Theor. Math. Phys. 4 (2000) 127–154, arXiv:hep-th/9909089.
  40. R. Minasian and G. W. Moore, “K theory and Ramond-Ramond charge,” JHEP 11 (1997) 002, arXiv:hep-th/9710230.
  41. E. Witten, “D-branes and K-theory,” JHEP 12 (1998) 019, arXiv:hep-th/9810188.
  42. K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” arXiv:2204.02407 [hep-th].
  43. I. R. Klebanov, P. Ouyang, and E. Witten, “A Gravity dual of the chiral anomaly,” Phys. Rev. D 65 (2002) 105007, arXiv:hep-th/0202056.
  44. R. C. Myers, “Dielectric branes,” JHEP 12 (1999) 022, arXiv:hep-th/9910053.
  45. J. Polchinski and M. J. Strassler, “The String dual of a confining four-dimensional gauge theory,” arXiv:hep-th/0003136.
  46. F. Apruzzi, G. Bruno De Luca, A. Gnecchi, G. Lo Monaco, and A. Tomasiello, “On AdS77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT stability,” JHEP 07 (2020) 033, arXiv:1912.13491 [hep-th].
  47. R. Dijkgraaf and E. Witten, “Topological gauge theories and group cohomology,” Communications in Mathematical Physics 129 no. 2, (1990) 393 – 429.
  48. A. Sen, “Stable nonBPS bound states of BPS D-branes,” JHEP 08 (1998) 010, arXiv:hep-th/9805019.
  49. A. Sen, “NonBPS states and Branes in string theory,” in Advanced School on Supersymmetry in the Theories of Fields, Strings and Branes, pp. 187–234. 1, 1999. arXiv:hep-th/9904207.
  50. K. Olsen and R. J. Szabo, “Constructing D-branes from K theory,” Adv. Theor. Math. Phys. 3 (1999) 889–1025, arXiv:hep-th/9907140.
  51. E. Witten, “Overview of K theory applied to strings,” Int. J. Mod. Phys. A 16 (2001) 693–706, arXiv:hep-th/0007175.
  52. D. Quillen, “Superconnections and the Chern character,” Topology 24 no. 1, (1985) 89–95.
  53. C. Kennedy and A. Wilkins, “Ramond-Ramond couplings on Brane - anti-Brane systems,” Phys. Lett. B 464 (1999) 206–212, arXiv:hep-th/9905195.
  54. M. Alishahiha, H. Ita, and Y. Oz, “On superconnections and the tachyon effective action,” Phys. Lett. B 503 (2001) 181–188, arXiv:hep-th/0012222.
  55. T. Takayanagi, S. Terashima, and T. Uesugi, “Brane - anti-brane action from boundary string field theory,” JHEP 03 (2001) 019, arXiv:hep-th/0012210.
  56. R. J. Szabo, “Superconnections, anomalies and nonBPS brane charges,” J. Geom. Phys. 43 (2002) 241–292, arXiv:hep-th/0108043.
  57. M. R. Garousi and E. Hatefi, “On Wess-Zumino terms of Brane-Antibrane systems,” Nucl. Phys. B 800 (2008) 502–516, arXiv:0710.5875 [hep-th].
  58. C. V. Johnson, D-branes. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2005.
  59. J. Cheeger and J. Simons, “Differential characters and geometric invariants,”.
  60. M. J. Hopkins and I. M. Singer, “Quadratic functions in geometry, topology, and M theory,” J. Diff. Geom. 70 no. 3, (2005) 329–452, arXiv:math/0211216.
  61. D. S. Freed, G. W. Moore, and G. Segal, “Heisenberg Groups and Noncommutative Fluxes,” Annals Phys. 322 (2007) 236–285, arXiv:hep-th/0605200.
  62. C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg, “Anomalies in the Space of Coupling Constants and Their Dynamical Applications I,” SciPost Phys. 8 no. 1, (2020) 001, arXiv:1905.09315 [hep-th].
  63. C.-T. Hsieh, Y. Tachikawa, and K. Yonekura, “Anomaly Inflow and p-Form Gauge Theories,” Commun. Math. Phys. 391 no. 2, (2022) 495–608, arXiv:2003.11550 [hep-th].
  64. E. Witten, “Baryons and branes in anti-de Sitter space,” JHEP 07 (1998) 006, arXiv:hep-th/9805112.
  65. F. Apruzzi, M. van Beest, D. S. W. Gould, and S. Schäfer-Nameki, “Holography, 1-form symmetries, and confinement,” Phys. Rev. D 104 no. 6, (2021) 066005, arXiv:2104.12764 [hep-th].
  66. Springer New York, New York, NY, 1982.
  67. G. W. Moore, “Anomalies, Gauss laws, and Page charges in M-theory,” Comptes Rendus Physique 6 (2005) 251–259, arXiv:hep-th/0409158.
  68. D. S. Freed, G. W. Moore, and G. Segal, “The Uncertainty of Fluxes,” Commun. Math. Phys. 271 (2007) 247–274, arXiv:hep-th/0605198.
  69. A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics,” Nucl. Phys. B 492 (1997) 152–190, arXiv:hep-th/9611230.
  70. J. M. Maldacena, G. W. Moore, and N. Seiberg, “D-brane charges in five-brane backgrounds,” JHEP 10 (2001) 005, arXiv:hep-th/0108152.
  71. A. Kapustin and N. Saulina, “Topological boundary conditions in abelian Chern-Simons theory,” Nucl. Phys. B 845 (2011) 393–435, arXiv:1008.0654 [hep-th].
  72. J. M. Maldacena, “Wilson loops in large N field theories,” Phys. Rev. Lett. 80 (1998) 4859–4862, arXiv:hep-th/9803002.
  73. P. Putrov and J. Wang, “Categorical Symmetry of the Standard Model from Gravitational Anomaly,” arXiv:2302.14862 [hep-th].
  74. D. Gaiotto and J. Maldacena, “The Gravity duals of N=2 superconformal field theories,” JHEP 10 (2012) 189, arXiv:0904.4466 [hep-th].
  75. I. Bah, F. Bonetti, E. Leung, and P. Weck, “The geometry of decoupling fields,” JHEP 09 (2022) 197, arXiv:2112.07796 [hep-th].
  76. L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki, and A. Tiwari, “Non-invertible higher-categorical symmetries,” SciPost Phys. 14 no. 1, (2023) 007, arXiv:2204.06564 [hep-th].
  77. L. Bhardwaj, S. Schafer-Nameki, and J. Wu, “Universal Non-Invertible Symmetries,” Fortsch. Phys. 70 no. 11, (2022) 2200143, arXiv:2208.05973 [hep-th].
  78. L. Bhardwaj, S. Schafer-Nameki, and A. Tiwari, “Unifying Constructions of Non-Invertible Symmetries,” arXiv:2212.06159 [hep-th].
  79. C. Copetti, M. Del Zotto, K. Ohmori, and Y. Wang, “Higher Structure of Chiral Symmetry,” arXiv:2305.18282 [hep-th].
  80. L. Kong, X.-G. Wen, and H. Zheng, “Boundary-bulk relation in topological orders,” Nuclear Physics B 922 (Sep, 2017) 62–76.
  81. W. Ji and X.-G. Wen, “Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions,” Phys. Rev. Res. 2 no. 3, (2020) 033417, arXiv:1912.13492 [cond-mat.str-el].
  82. A. Chatterjee and X.-G. Wen, “Symmetry as a shadow of topological order and a derivation of topological holographic principle,” Phys. Rev. B 107 no. 15, (2023) 155136, arXiv:2203.03596 [cond-mat.str-el].
  83. L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng, “Algebraic higher symmetry and categorical symmetry: A holographic and entanglement view of symmetry,” Physical Review Research 2 no. 4, (Oct, 2020) .
  84. C. Zhang and C. Córdova, “Anomalies of (1+1)⁢D11𝐷(1+1)D( 1 + 1 ) italic_D categorical symmetries,” arXiv:2304.01262 [cond-mat.str-el].
  85. I. R. Klebanov and E. Witten, “Superconformal field theory on three-branes at a Calabi-Yau singularity,” Nucl. Phys. B 536 (1998) 199–218, arXiv:hep-th/9807080.
  86. P. Candelas and X. C. de la Ossa, “Comments on Conifolds,” Nucl. Phys. B 342 (1990) 246–268.
  87. D. Cassani and A. F. Faedo, “A Supersymmetric consistent truncation for conifold solutions,” Nucl. Phys. B 843 (2011) 455–484, arXiv:1008.0883 [hep-th].
  88. I. Bah, F. Bonetti, R. Minasian, and E. Nardoni, “Class 𝒮𝒮\mathcal{S}caligraphic_S Anomalies from M-theory Inflow,” Phys. Rev. D 99 no. 8, (2019) 086020, arXiv:1812.04016 [hep-th].
  89. I. Bah, F. Bonetti, R. Minasian, and E. Nardoni, “Anomaly Inflow for M5-branes on Punctured Riemann Surfaces,” JHEP 06 (2019) 123, arXiv:1904.07250 [hep-th].
  90. I. Bah and F. Bonetti, “Anomaly Inflow, Accidental Symmetry, and Spontaneous Symmetry Breaking,” JHEP 01 (2020) 117, arXiv:1910.07549 [hep-th].
  91. L. A. Pando Zayas and A. A. Tseytlin, “3-branes on resolved conifold,” JHEP 11 (2000) 028, arXiv:hep-th/0010088.
  92. A. Hatcher, Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
  93. J. McCleary, A User’s Guide to Spectral Sequences. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 ed., 2000.
  94. D.-E. Diaconescu, G. W. Moore, and E. Witten, “E(8) gauge theory, and a derivation of K theory from M theory,” Adv. Theor. Math. Phys. 6 (2003) 1031–1134, arXiv:hep-th/0005090.
  95. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” arXiv:2204.09025 [hep-th].
Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com