Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient High-Resolution Template Matching with Vector Quantized Nearest Neighbour Fields (2306.15010v3)

Published 26 Jun 2023 in cs.CV and cs.IR

Abstract: Template matching is a fundamental problem in computer vision with applications in fields including object detection, image registration, and object tracking. Current methods rely on nearest-neighbour (NN) matching, where the query feature space is converted to NN space by representing each query pixel with its NN in the template. NN-based methods have been shown to perform better in occlusions, appearance changes, and non-rigid transformations; however, they scale poorly with high-resolution data and high feature dimensions. We present an NN-based method which efficiently reduces the NN computations and introduces filtering in the NN fields (NNFs). A vector quantization step is introduced before the NN calculation to represent the template with $k$ features, and the filter response over the NNFs is used to compare the template and query distributions over the features. We show that state-of-the-art performance is achieved in low-resolution data, and our method outperforms previous methods at higher resolution.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com