Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AttResDU-Net: Medical Image Segmentation Using Attention-based Residual Double U-Net (2306.14255v1)

Published 25 Jun 2023 in eess.IV and cs.CV

Abstract: Manually inspecting polyps from a colonoscopy for colorectal cancer or performing a biopsy on skin lesions for skin cancer are time-consuming, laborious, and complex procedures. Automatic medical image segmentation aims to expedite this diagnosis process. However, numerous challenges exist due to significant variations in the appearance and sizes of objects with no distinct boundaries. This paper proposes an attention-based residual Double U-Net architecture (AttResDU-Net) that improves on the existing medical image segmentation networks. Inspired by the Double U-Net, this architecture incorporates attention gates on the skip connections and residual connections in the convolutional blocks. The attention gates allow the model to retain more relevant spatial information by suppressing irrelevant feature representation from the down-sampling path for which the model learns to focus on target regions of varying shapes and sizes. Moreover, the residual connections help to train deeper models by ensuring better gradient flow. We conducted experiments on three datasets: CVC Clinic-DB, ISIC 2018, and the 2018 Data Science Bowl datasets and achieved Dice Coefficient scores of 94.35%, 91.68% and 92.45% respectively. Our results suggest that AttResDU-Net can be facilitated as a reliable method for automatic medical image segmentation in practice.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. R. Wang, T. Lei, R. Cui, B. Zhang, H. Meng, and A. K. Nandi, “Medical image segmentation using deep learning: A survey,” IET Image Processing, vol. 16, no. 5, pp. 1243–1267, 2022. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ipr2.12419
  2. Z. Wei, F. Shi, H. Song, W. Ji, and G. Han, “Attentive boundary aware network for multi-scale skin lesion segmentation with adversarial training,” Multimedia Tools and Applications, vol. 79, no. 37, pp. 27 115–27 136, 2020. [Online]. Available: https://link.springer.com/article/10.1007/s11042-020-09334-2
  3. D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Pranet: Parallel reverse attention network for polyp segmentation,” in International conference on medical image computing and computer-assisted intervention.   Springer, 2020, pp. 263–273. [Online]. Available: https://arxiv.org/abs/2006.11392
  4. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention.   Springer, 2015, pp. 234–241. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
  5. O. Oktay, J. Schlemper, L. L. Folgoc, M. C. H. Lee, M. P. Heinrich, K. Misawa, K. Mori, S. G. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, “Attention U-Net: Learning Where to Look for the Pancreas,” CoRR, vol. abs/1804.03999, 2018. [Online]. Available: http://arxiv.org/abs/1804.03999
  6. D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen, “DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation,” in 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS).   Los Alamitos, CA, USA: IEEE Computer Society, jul 2020, pp. 558–564. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CBMS49503.2020.00111
  7. A. Lin, B. Chen, J. Xu, Z. Zhang, G. Lu, and D. Zhang, “DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–15, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9785614/
  8. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.   IEEE Computer Society, 2016, pp. 770–778. [Online]. Available: https://ieeexplore.ieee.org/document/7780459/
  9. M. Bencevic, I. Galic, M. Habijan, and D. Babin, “Training on Polar Image Transformations Improves Biomedical Image Segmentation,” IEEE Access, vol. 9, pp. 133 365–133 375, 2021. [Online]. Available: https://doi.org/10.1109/ACCESS.2021.3116265
  10. S. Ahmed, M. B. Hasan, T. Ahmed, M. R. K. Sony, and M. H. Kabir, “Less is More: Lighter and Faster Deep Neural Architecture for Tomato Leaf Disease Classification,” IEEE Access, vol. 10, pp. 68 868–68 884, 2022.
  11. J. Ng, M. Goyal, B. Hewitt, and M. H. Yap, “The effect of color constancy algorithms on semantic segmentation of skin lesions,” in Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, San Diego, California, United States, 16-21 February 2019, ser. SPIE Proceedings, B. Gimi and A. Król, Eds., vol. 10953.   SPIE, 2019, p. 109530R. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10953/2512702/The-effect-of-color-constancy-algorithms-on-semantic-segmentation-of/10.1117/12.2512702.full?SSO=1
  12. M. E. Celebi, W. Guo, Y. A. Aslandogan, and P. R. Bergstresser, “Skin Lesion Segmentation Using Clustering Techniques,” in Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference, Clearwater Beach, Florida, USA, I. Russell and Z. Markov, Eds.   AAAI Press, 2005, pp. 364–369. [Online]. Available: http://www.aaai.org/Library/FLAIRS/2005/flairs05-060.php
  13. A. Wong, J. Scharcanski, and P. W. Fieguth, “Automatic Skin Lesion Segmentation via Iterative Stochastic Region Merging,” IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 6, pp. 929–936, 2011. [Online]. Available: https://ieeexplore.ieee.org/document/5776681
  14. S. Gross, M. Kennel, T. Stehle, J. Wulff, J. J. W. Tischendorf, C. Trautwein, and T. Aach, “Polyp Segmentation in NBI Colonoscopy,” in Bildverarbeitung für die Medizin 2009: Algorithmen - Systeme - Anwendungen, Proceedings des Workshops vom 22. bis 25. März 2009 in Heidelberg, ser. Informatik Aktuell, H. Meinzer, T. M. Deserno, H. Handels, and T. Tolxdorff, Eds.   Springer, 2009, pp. 252–256. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-93860-6_51
  15. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1361841517301135
  16. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A Nested U-Net Architecture for Medical Image Segmentation,” in Deep Learning in Medical Image Analysis - and - Multimodal Learning for Clinical Decision Support - 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings, ser. Lecture Notes in Computer Science, D. Stoyanov, Z. Taylor, G. Carneiro, T. F. Syeda-Mahmood, A. L. Martel, L. Maier-Hein, J. M. R. S. Tavares, A. P. Bradley, J. P. Papa, V. Belagiannis, J. C. Nascimento, Z. Lu, S. Conjeti, M. Moradi, H. Greenspan, and A. Madabhushi, Eds., vol. 11045.   Springer, 2018, pp. 3–11. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-00889-5_1
  17. L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous Convolution for Semantic Image Segmentation,” CoRR, vol. abs/1706.05587, 2017. [Online]. Available: http://arxiv.org/abs/1706.05587
  18. J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou, “TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation,” CoRR, vol. abs/2102.04306, 2021. [Online]. Available: https://arxiv.org/abs/2102.04306
  19. A. Srivastava, D. Jha, S. Chanda, U. Pal, H. D. Johansen, D. Johansen, M. A. Riegler, S. Ali, and P. Halvorsen, “MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation,” IEEE J. Biomed. Health Informatics, vol. 26, no. 5, pp. 2252–2263, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9662196/
  20. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
  21. J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.   IEEE, 2018, pp. 7132–7141. [Online]. Available: https://ieeexplore.ieee.org/document/8578843
  22. G. D. Finlayson and E. Trezzi, “Shades of Gray and Colour Constancy,” in The Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications, CIC 2004, Scottsdale, Arizona, USA, November 9-12, 2004.   IS&T - The Society for Imaging Science and Technology, 2004.
  23. N. C. F. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. W. Dusza, D. A. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. A. Marchetti, H. Kittler, and A. Halpern, “Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC),” CoRR, vol. abs/1902.03368, 2019. [Online]. Available: http://arxiv.org/abs/1902.03368
  24. J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. R. de Miguel, and F. Vilariño, “WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” Comput. Medical Imaging Graph., vol. 43, pp. 99–111, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0895611115000567
  25. N. C. F. Codella, D. A. Gutman, M. E. Celebi, B. Helba, M. A. Marchetti, S. W. Dusza, A. Kalloo, K. Liopyris, N. K. Mishra, H. Kittler, and A. Halpern, “Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC),” vol. abs/1710.05006, 2017. [Online]. Available: http://arxiv.org/abs/1710.05006
  26. J. C. Caicedo, A. Goodman, K. W. Karhohs, B. A. Cimini, J. Ackerman, M. Haghighi, C. Heng, T. Becker, M. Doan, C. McQuin et al., “Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl,” Nature methods, vol. 16, no. 12, pp. 1247–1253, 2019. [Online]. Available: https://www.nature.com/articles/s41592-019-0612-7
  27. C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, “Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support - Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, 2017, Proceedings, ser. Lecture Notes in Computer Science, M. J. Cardoso, T. Arbel, G. Carneiro, T. F. Syeda-Mahmood, J. M. R. S. Tavares, M. Moradi, A. P. Bradley, H. Greenspan, J. P. Papa, A. Madabhushi, J. C. Nascimento, J. S. Cardoso, V. Belagiannis, and Z. Lu, Eds., vol. 10553.   Springer, 2017, pp. 240–248. [Online]. Available: https://doi.org/10.1007/978-3-319-67558-9_28
  28. T. Dozat, “Incorporating Nesterov Momentum into Adam,” in International Conference on Learning Representations, Caribe Hilton, San Juan, Puerto Rico, May 2 - 4, 2016, 2016.
  29. A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A. Kalinin, “Albumentations: Fast and Flexible Image Augmentations,” Inf., vol. 11, no. 2, p. 125, 2020. [Online]. Available: https://www.mdpi.com/2078-2489/11/2/125
  30. K. H. Zou, S. K. Warfield, A. Bharatha, C. M. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells III, F. A. Jolesz, and R. Kikinis, “Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports,” Academic Radiology, vol. 11, no. 2, pp. 178–189, 2004. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1076633203006718
  31. L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,” in Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VII, ser. Lecture Notes in Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., vol. 11211.   Springer, 2018, pp. 833–851. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-01234-2_49
  32. D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. de Lange, P. Halvorsen, and H. D. Johansen, “ResUNet++: An Advanced Architecture for Medical Image Segmentation,” in IEEE International Symposium on Multimedia, ISM 2019, San Diego, CA, USA, December 9-11, 2019.   IEEE, 2019, pp. 225–230. [Online]. Available: https://ieeexplore.ieee.org/document/8959021/
  33. T. Kim, H. Lee, and D. Kim, “UACANet: Uncertainty Augmented Context Attention for Polyp Segmentation,” in MM ’21: ACM Multimedia Conference, Virtual Event, China, October 20 - 24, 2021, H. T. Shen, Y. Zhuang, J. R. Smith, Y. Yang, P. César, F. Metze, and B. Prabhakaran, Eds.   ACM, 2021, pp. 2167–2175. [Online]. Available: https://dl.acm.org/doi/10.1145/3474085.3475375
  34. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” in 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021.   IEEE, 2021, pp. 9992–10 002. [Online]. Available: https://ieeexplore.ieee.org/document/9710580/
Citations (3)

Summary

We haven't generated a summary for this paper yet.