Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy (2105.07467v2)

Published 16 May 2021 in eess.IV, cs.CV, and cs.LG

Abstract: Background: Colonoscopy remains the gold-standard screening for colorectal cancer. However, significant miss rates for polyps have been reported, particularly when there are multiple small adenomas. This presents an opportunity to leverage computer-aided systems to support clinicians and reduce the number of polyps missed. Method: In this work we introduce the Focus U-Net, a novel dual attention-gated deep neural network, which combines efficient spatial and channel-based attention into a single Focus Gate module to encourage selective learning of polyp features. The Focus U-Net further incorporates short-range skip connections and deep supervision. Furthermore, we introduce the Hybrid Focal loss, a new compound loss function based on the Focal loss and Focal Tversky loss, to handle class-imbalanced image segmentation. For our experiments, we selected five public datasets containing images of polyps obtained during optical colonoscopy: CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, ETIS-Larib PolypDB and EndoScene test set. To evaluate model performance, we use the Dice similarity coefficient (DSC) and Intersection over Union (IoU) metrics. Results: Our model achieves state-of-the-art results for both CVC-ClinicDB and Kvasir-SEG, with a mean DSC of 0.941 and 0.910, respectively. When evaluated on a combination of five public polyp datasets, our model similarly achieves state-of-the-art results with a mean DSC of 0.878 and mean IoU of 0.809, a 14% and 15% improvement over the previous state-of-the-art results of 0.768 and 0.702, respectively. Conclusions: This study shows the potential for deep learning to provide fast and accurate polyp segmentation results for use during colonoscopy. The Focus U-Net may be adapted for future use in newer non-invasive screening and more broadly to other biomedical image segmentation tasks involving class imbalance and requiring efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Michael Yeung (10 papers)
  2. Evis Sala (13 papers)
  3. Carola-Bibiane Schönlieb (276 papers)
  4. Leonardo Rundo (19 papers)
Citations (108)

Summary

We haven't generated a summary for this paper yet.