Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QoS-based Beamforming and Compression Design for Cooperative Cellular Networks via Lagrangian Duality (2306.13962v1)

Published 24 Jun 2023 in cs.IT, eess.SP, math.IT, and math.OC

Abstract: This paper considers the quality-of-service (QoS)-based joint beamforming and compression design problem in the downlink cooperative cellular network, where multiple relay-like base stations (BSs), connected to the central processor via rate-limited fronthaul links, cooperatively transmit messages to the users. The problem of interest is formulated as the minimization of the total transmit power of the BSs, subject to all users' signal-to-interference-plus-noise ratio (SINR) constraints and all BSs' fronthaul rate constraints. In this paper, we first show that there is no duality gap between the considered joint optimization problem and its Lagrangian dual by showing the tightness of its semidefinite relaxation (SDR). Then, we propose an efficient algorithm based on the above duality result for solving the considered problem. The proposed algorithm judiciously exploits the special structure of an enhanced Karush-Kuhn-Tucker (KKT) conditions of the considered problem and finds the solution that satisfies the enhanced KKT conditions via two fixed point iterations. Two key features of the proposed algorithm are: (1) it is able to detect whether the considered problem is feasible or not and find its globally optimal solution when it is feasible; (2) it is highly efficient because both of the fixed point iterations in the proposed algorithm are linearly convergent and evaluating the functions in the fixed point iterations are computationally cheap. Numerical results show the global optimality and efficiency of the proposed algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com