Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Beamforming and Compression Design for Per-Antenna Power Constrained Cooperative Cellular Networks (2309.05226v2)

Published 11 Sep 2023 in cs.IT, eess.SP, math.IT, and math.OC

Abstract: In the cooperative cellular network, relay-like base stations are connected to the central processor (CP) via rate-limited fronthaul links and the joint processing is performed at the CP, which thus can effectively mitigate the multiuser interference. In this paper, we consider the joint beamforming and compression problem with per-antenna power constraints in the cooperative cellular network. We first establish the equivalence between the considered problem and its semidefinite relaxation (SDR). Then we further derive the partial Lagrangian dual of the SDR problem and show that the objective function of the obtained dual problem is differentiable. Based on the differentiability, we propose two efficient projected gradient ascent algorithms for solving the dual problem, which are projected exact gradient ascent (PEGA) and projected inexact gradient ascent (PIGA). While PEGA is guaranteed to find the global solution of the dual problem (and hence the global solution of the original problem), PIGA is more computationally efficient due to the lower complexity in inexactly computing the gradient. Global optimality and high efficiency of the proposed algorithms are demonstrated via numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Peng, C. Wang, V. Lau, and H. V. Poor, “Fronthaul-constrained cloud radio access networks: Insights and challenges,” IEEE Wireless Commun., vol. 22, no. 2, pp. 152–160, Apr. 2015.
  2. B. Dai and W. Yu, “Sparse beamforming and user-centric clustering for downlink cloud radio access network,” IEEE Access, vol. 2, pp. 1326–1339, Oct. 2014.
  3. Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for green cloud-RAN,” IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2809–2823, May 2014.
  4. S.-H. Park, O. Simeone, O. Sahin, and S. Shamai, “Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks,” IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5646–5658, Nov. 2013.
  5. ——, “Inter-cluster design of precoding and fronthaul compression for cloud radio access networks,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 369–372, Aug. 2014.
  6. P. Patil and W. Yu, “Hybrid compression and message-sharing strategy for the downlink cloud radio-access network,” in Proc. Inf. Theory Appl. Workshop (ITA), Feb. 2014, pp. 1–6.
  7. J. Kang, O. Simeone, J. Kang, and S. Shamai, “Fronthaul compression and precoding design for C-RANs over ergodic fading channels,” IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 5022–5032, Jul. 2016.
  8. Y. Zhou and W. Yu, “Fronthaul compression and transmit beamforming optimization for multi-antenna uplink C-RAN,” IEEE Trans. Signal Process., vol. 64, no. 16, pp. 4138–4151, Aug. 2016.
  9. S. He, Y. Wu, J. Ren, Y. Huang, R. Schober, and Y. Zhang, “Hybrid precoder design for cache-enabled millimeter-wave radio access networks,” IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1707–1722, Mar. 2019.
  10. J. Kim, S.-H. Park, O. Simeone, I. Lee, and S. S. Shitz, “Joint design of fronthauling and hybrid beamforming for downlink C-RAN systems,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4423–4434, Jun. 2019.
  11. S. Ahn, S.-I. Park, J.-Y. Lee, N. Hur, and J. Kang, “Fronthaul compression and precoding optimization for NOMA-based joint transmission of broadcast and unicast services in C-RAN,” IEEE Trans. Broadcast., vol. 66, no. 4, pp. 786–799, Dec. 2020.
  12. L. Liu, Y.-F. Liu, P. Patil, and W. Yu, “Uplink-downlink duality between multiple-access and broadcast channels with compressing relays,” IEEE Trans. Inf. Theory, pp. 7304–7337, Nov. 2021.
  13. X. Fan, Y.-F. Liu, and L. Liu, “Efficiently and globally solving joint beamforming and compression problem in the cooperative cellular network via Lagrangian duality,” in Proc. IEEE ICASSP, May 2022, pp. 5388–5392.
  14. X. Fan, Y.-F. Liu, L. Liu, and T.-H. Chang, “QoS-based beamforming and compression design for cooperative cellular networks via Lagrangian duality,” Jun. 2023. [Online]. Available: http://arxiv.org/abs/2306.13962.
  15. W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2646–2660, Jun. 2007.
  16. G. Dartmann, X. Gong, W. Afzal, and G. Ascheid, “On the duality of the max-min beamforming problem with per-antenna and per-antenna-array power constraints,” IEEE Trans. Veh. Technol., vol. 62, no. 2, pp. 606–619, Feb. 2013.
  17. J. Zhang, W. Xia, M. You, G. Zheng, S. Lambotharan, and K.-K. Wong, “Deep learning enabled optimization of downlink beamforming under per-antenna power constraints: Algorithms and experimental demonstration,” IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 3738–3752, Jun. 2020.
  18. L. Miretti, R. L. G. Cavalcante, E. Björnson, and S. Stańczak, “UL-DL duality for cell-free massive MIMO with per-AP power and information constraints,” Jan. 2023. [Online]. Available: http://arxiv.org/abs/2301.06520.
  19. S. Shi, M. Schubert, and H. Boche, “Per-antenna power constrained rate optimization for multiuser MIMO systems,” in Proc. International ITG Workshop Smart Antennas, Feb. 2008, pp. 270–277.
  20. A. Tolli, M. Codreanu, and M. Juntti, “Linear multiuser MIMO transceiver design with quality of service and per-antenna power constraints,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3049–3055, Jul. 2008.
  21. D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Weighted fair multicast multigroup beamforming under per-antenna power constraints,” IEEE Trans. Signal Process., vol. 62, no. 19, pp. 5132–5142, Oct. 2014.
  22. H. Shen, W. Xu, A. L. Swindlehurst, and C. Zhao, “Transmitter optimization for per-antenna power constrained multi-antenna downlinks: An SLNR maximization methodology,” IEEE Trans. Signal Process., vol. 64, no. 10, pp. 2712–2725, May 2016.
  23. X. Hu and X. Dai, “A single-loop algorithm for weighted sum rate maximization in multiuser MIMO systems with per-antenna power constraints,” IEEE Trans. Wireless Commun. (early access), May 2023.
  24. Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.
  25. Y. Xu, C. Lu, Z. Deng, and Y.-F. Liu, “New semidefinite relaxations for a class of complex quadratic programming problems,” J. Global Optim., vol. 87, pp. 255–275, Sep. 2023.
  26. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
  27. Y.-H. Dai and R. Fletcher, “Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming,” Numer. Math., vol. 100, no. 1, pp. 21–47, Mar. 2005.
  28. L. Grippo, F. Lampariello, and S. Lucidi, “A nonmonotone line search technique for Newton’s method,” SIAM J. Numer. Anal., vol. 23, no. 4, pp. 707–716, Aug. 1986.
  29. E. G. Birgin, J. M. Martínez, and M. Raydan, “Nonmonotone spectral projected gradient methods on convex sets,” SIAM J. Optim., vol. 10, no. 4, pp. 1196–1211, Jan. 2000.
Citations (1)

Summary

We haven't generated a summary for this paper yet.