Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Improving Spherical Image Resampling through Viewport-Adaptivity (2306.13692v1)

Published 23 Jun 2023 in eess.IV

Abstract: The conversion between different spherical image and video projection formats requires highly accurate resampling techniques in order to minimize the inevitable loss of information. Suitable resampling algorithms such as nearest neighbor, linear or cubic resampling are readily available. However, no generally applicable resampling technique exploits the special properties of spherical images so far. Thus, we propose a novel viewport-adaptive resampling (VAR) technique that takes the spherical characteristics of the underlying resampling problem into account. VAR can be applied to any mesh-to-mesh capable resampling algorithm and shows significant gains across all tested techniques. In combination with frequency-selective resampling, VAR outperforms conventional cubic resampling by more than 2 dB in terms of WS-PSNR. A visual inspection and the evaluation of further metrics such as PSNR and SSIM support the positive results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube