Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Normal 5-edge-coloring of some snarks superpositioned by Flower snarks (2306.13340v2)

Published 23 Jun 2023 in math.CO

Abstract: An edge e is normal in a proper edge-coloring of a cubic graph G if the number of distinct colors on four edges incident to e is 2 or 4: A normal edge-coloring of G is a proper edge-coloring in which every edge of G is normal. The Petersen Coloring Conjecture is equivalent to stating that every bridgeless cubic graph has a normal 5-edge-coloring. Since every 3-edge-coloring of a cubic graph is trivially normal, it is suficient to consider only snarks to establish the conjecture. In this paper, we consider a class of superpositioned snarks obtained by choosing a cycle C in a snark G and superpositioning vertices of C by one of two simple supervertices and edges of C by superedges Hx;y, where H is any snark and x; y any pair of nonadjacent vertices of H: For such superpositioned snarks, two suficient conditions are given for the existence of a normal 5-edge-coloring. The first condition yields a normal 5-edge-coloring for all hypohamiltonian snarks used as superedges, but only for some of the possible ways of connecting them. In particular, since the Flower snarks are hypohamiltonian, this consequently yields a normal 5-edge-coloring for many snarks superpositioned by the Flower snarks. The second sufficient condition is more demanding, but its application yields a normal 5-edge-colorings for all superpositions by the Flower snarks. The same class of snarks is considered in [S. Liu, R.-X. Hao, C.-Q. Zhang, Berge{Fulkerson coloring for some families of superposition snarks, Eur. J. Comb. 96 (2021) 103344] for the Berge-Fulkerson conjecture. Since we established that this class has a Petersen coloring, this immediately yields the result of the above mentioned paper.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.