Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gilbert damping in metallic ferromagnets from Schwinger-Keldysh field theory: Intrinsically nonlocal and nonuniform, and made anisotropic by spin-orbit coupling (2306.13013v4)

Published 22 Jun 2023 in cond-mat.mes-hall

Abstract: Understanding the origin of damping mechanisms in magnetization dynamics of metallic ferromagnets is a fundamental problem for nonequilibrium many-body physics of systems where quantum conduction electrons interact with localized spins assumed to be governed by the classical Landau-Lifshitz-Gilbert (LLG) equation. It is also of critical importance for applications, as damping affects energy consumption and speed of spintronic and magnonic devices. Since the 1970s, a variety of linear-response and scattering theory approaches have been developed to produce widely used formulas for computation of spatially-independent Gilbert scalar parameter as the magnitude of the Gilbert damping term in the LLG equation. The largely unexploited for this purpose Schwinger-Keldysh field theory (SKFT) offers additional possibilities, such as to rigorously derive an extended LLG equation by integrating quantum electrons out. Here we derive such equation whose Gilbert damping for metallic ferromagnets is nonlocal, i.e., dependent on all localized spins at a given time, and nonuniform, even if all localized spins are collinear and spin-orbit coupling (SOC) is absent. This is in sharp contrast to standard lore, where nonlocal damping is considered to emerge only if localized spins are noncollinear; for such situations, direct comparison on the example of magnetic domain wall shows that SKFT-derived nonlocal damping is an order of magnitude larger than the previously considered one. Switching on SOC makes such nonlocal damping anisotropic, in contrast to standard lore where SOC is usually necessary to obtain nonzero Gilbert damping scalar parameter. Our analytical formulas, with their nonlocality being more prominent in low spatial dimensions, are fully corroborated by numerically exact quantum-classical simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. L. D. Landau and E. M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8, 153 (1935).
  2. D. V. Berkov and J. Miltat, Spin-torque driven magnetization dynamics: Micromagnetic modeling, J. Magn. Magn. Mater. 320, 1238 (2008).
  3. S.-K. Kim, Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements, J. Phys. D: Appl. Phys. 43, 264004 (2010).
  4. F. García-Gaítan and B. K. Nikolić, Fate of entanglement in magnetism under Lindbladian or non-Markovian dynamics and conditions for their transition to Landau-Lifshitz-Gilbert classical dynamics, arXiv:2303.17596 (2023) .
  5. W. M. Saslow, Landau-Lifshitz or Gilbert damping? that is the question, J. Appl. Phys. 105, 07D315 (2009).
  6. T. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40, 3443 (2004).
  7. A. Brataas, Y. Tserkovnyak, and G. Bauer, Scattering theory of Gilbert damping, Phys. Rev. Lett. 101, 037207 (2008).
  8. D. Thonig and J. Henk, Gilbert damping tensor within the breathing Fermi surface model: anisotropy and non-locality, New J. Phys. 16, 013032 (2014).
  9. S. Zhang and S. L. Zhang, Generalization of the Landau-Lifshitz-Gilbert equation for conducting ferromagnets, Phys. Rev. Lett. 102, 086601 (2009).
  10. E. Hankiewicz, G. Vignale, and Y. Tserkovnyak, Inhomogeneous Gilbert damping from impurities and electron-electron interactions, Phys. Rev. B 78, 020404(R) (2008).
  11. Y. Tserkovnyak and M. Mecklenburg, Electron transport driven by nonequilibrium magnetic textures, Phys. Rev. B 77, 134407 (2008).
  12. Y. Tserkovnyak, E. M. Hankiewicz, and G. Vignale, Transverse spin diffusion in ferromagnets, Phys. Rev. B 79, 094415 (2009).
  13. S. Mankovsky, S. Wimmer, and H. Ebert, Gilbert damping in noncollinear magnetic systems, Phys. Rev. B 98, 104406 (2018).
  14. M. C. Hickey and J. S. Moodera, Origin of intrinsic Gilbert damping, Phys. Rev. Lett. 102, 137601 (2009).
  15. I. Garate and A. MacDonald, Gilbert damping in conducting ferromagnets. i. Kohn-Sham theory and atomic-scale inhomogeneity, Phys. Rev. B 79, 064403 (2009a).
  16. I. Garate and A. MacDonald, Gilbert damping in conducting ferromagnets. ii. model tests of the torque-correlation formula, Phys. Rev. B 79, 064404 (2009b).
  17. I. A. Ado, P. M. Ostrovsky, and M. Titov, Anisotropy of spin-transfer torques and Gilbert damping induced by Rashba coupling, Phys. Rev. B 101, 085405 (2020).
  18. Y. Hou and R. Wu, Strongly enhanced Gilbert damping in 3d transition-metal ferromagnet monolayers in contact with the topological insulator Bi22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTSe33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, Phys. Rev. Appl. 11, 054032 (2019).
  19. V. Kamberský, On ferromagnetic resonance damping in metals, Czech. J. Phys. 26, 1366 (1976).
  20. V. Kamberský, FMR linewidth and disorder in metals, Czech. J. Phys. 34, 1111 (1984).
  21. V. Kamberský, Spin-orbital Gilbert damping in common magnetic metals, Phys. Rev. B 76, 134416 (2007).
  22. V. G. Bar’yakhtar, Phenomenological description of relaxation processes in magnetic materials, Sov. Phys. JETP 60, 863 (1984).
  23. Y. Li and W. Bailey, Wave-number-dependent Gilbert damping in metallic ferromagnets., Phys. Rev. Lett. 116, 117602 (2016).
  24. M. Sayad and M. Potthoff, Spin dynamics and relaxation in the classical-spin Kondo-impurity model beyond the Landau-Lifschitz-Gilbert equation, New J. Phys. 17, 113058 (2015).
  25. U. Bajpai and B. Nikolić, Time-retarded damping and magnetic inertia in the Landau-Lifshitz-Gilbert equation self-consistently coupled to electronic time-dependent nonequilibrium Green functions, Phys. Rev. B 99, 134409 (2019).
  26. D. Thonig, J. Henk, and O. Eriksson, Gilbert-like damping caused by time retardation in atomistic magnetization dynamics, Phys. Rev. B 92, 104403 (2015).
  27. D. Ralph and M. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320, 1190 (2008).
  28. A. Suresh, U. Bajpai, and B. K. Nikolić, Magnon-driven chiral charge and spin pumping and electron-magnon scattering from time-dependent quantum transport combined with classical atomistic spin dynamics, Phys. Rev. B 101, 214412 (2020).
  29. M. V. Berry and J. M. Robbins, Chaotic classical and half-classical adiabatic reactions: geometric magnetism and deterministic friction, Proc. R. Soc. Lond. A: Math. Phys. Sci. 442, 659 (1993).
  30. M. Campisi, S. Denisov, and P. Hänggi, Geometric magnetism in open quantum systems, Phys. Rev. A 86, 032114 (2012).
  31. U. Bajpai and B. K. Nikolić, Spintronics meets nonadiabatic molecular dynamics: Geometric spin torque and damping on dynamical classical magnetic texture due to an electronic open quantum system, Phys. Rev. Lett. 125, 187202 (2020).
  32. A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2023).
  33. M. Onoda and N. Nagaosa, Dynamics of localized spins coupled to the conduction electrons with charge and spin currents, Phys. Rev. Lett. 96, 066603 (2006).
  34. Y. Rikitake and H. Imamura, Decoherence of localized spins interacting via RKKY interaction, Phys. Rev. B 72, 033308 (2005).
  35. J. Fransson, Dynamical exchange interaction between localized spins out of equilibrium, Phys. Rev. B 82, 180411 (2010).
  36. A. S. Núñez and R. Duine, Effective temperature and Gilbert damping of a current-driven localized spin, Phys. Rev. B 77, 054401 (2008).
  37. S. Díaz and Á. S. Núñez, Current-induced exchange interactions and effective temperature in localized moment systems, J. Phys.: Condens. Matter 24, 116001 (2012).
  38. A. T. Costa and R. B. Muniz, Breakdown of the adiabatic approach for magnetization damping in metallic ferromagnets, Phys. Rev. B 92, 014419 (2015).
  39. D. M. Edwards, The absence of intraband scattering in a consistent theory of Gilbert damping in pure metallic ferromagnets, J. Phys.: Condens. Matter 28, 086004 (2016).
  40. F. Mahfouzi, J. Kim, and N. Kioussis, Intrinsic damping phenomena from quantum to classical magnets: An ab initio study of Gilbert damping in a Pt/Co bilayer, Phys. Rev. B 96, 214421 (2017).
  41. A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Magnetization dissipation in ferromagnets from scattering theory, Phys. Rev. B 84, 054416 (2011).
  42. A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2023).
  43. H. M. Hurst, V. Galitski, and T. T. Heikkilä, Electron-induced massive dynamics of magnetic domain walls, Phys. Rev. B 101, 054407 (2020).
  44. F. Reyes-Osorio and B. K. Nikolić, Anisotropic skyrmion mass induced by surrounding conduction electrons: A Schwinger-Keldysh field theory approach, arXiv:2302.04220 (2023) .
  45. M. Governale and U. Zülicke, Rashba spin splitting in quantum wires, Solid State Commun. 131, 581 (2004).
  46. M. Fähnle, D. Steiauf, and J. Seib, The Gilbert equation revisited: anisotropic and nonlocal damping of magnetization dynamics, J. Phys. D: Appl. Phys. 41, 164014 (2008).
  47. E. Montoya, B. Heinrich, and E. Girt, Quantum well state induced oscillation of pure spin currents in Fe/Au/Pd(001) systems, Phys. Rev. Lett. 113, 136601 (2014).
  48. D. Ryndyk, Theory of Quantum Transport at Nanoscale (Springer, Cham, 2016).
  49. S. E. Barnes and S. Maekawa, Generalization of Faraday’s law to include nonconservative spin forces, Phys. Rev. Lett. 98, 246601 (2007).
  50. R. A. Duine, Effects of nonadiabaticity on the voltage generated by a moving domain wall, Phys. Rev. B 79, 014407 (2009).
  51. G. Tatara, Effective gauge field theory of spintronics, Phys. E: Low-Dimens. Syst. Nanostructures 106, 208 (2019).
Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube