Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

A Gradient Descent-Ascent Method for Continuous-Time Risk-Averse Optimal Control (2306.12878v1)

Published 22 Jun 2023 in math.OC

Abstract: In this paper, we consider continuous-time stochastic optimal control problems where the cost is evaluated through a coherent risk measure. We provide an explicit gradient descent-ascent algorithm which applies to problems subject to non-linear stochastic differential equations. More specifically, we leverage duality properties of coherent risk measures to relax the problem via a smooth min-max reformulation which induces artificial strong concavity in the max subproblem. We then formulate necessary conditions of optimality for this relaxed problem which we leverage to prove convergence of the gradient descent-ascent algorithm to candidate solutions of the original problem. Finally, we showcase the efficiency of our algorithm through numerical simulations involving trajectory tracking problems and highlight the benefit of favoring risk measures over classical expectation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.