Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Decentralized Quantum Federated Learning for Metaverse: Analysis, Design and Implementation (2306.11297v1)

Published 20 Jun 2023 in cs.LG

Abstract: With the emerging developments of the Metaverse, a virtual world where people can interact, socialize, play, and conduct their business, it has become critical to ensure that the underlying systems are transparent, secure, and trustworthy. To this end, we develop a decentralized and trustworthy quantum federated learning (QFL) framework. The proposed QFL leverages the power of blockchain to create a secure and transparent system that is robust against cyberattacks and fraud. In addition, the decentralized QFL system addresses the risks associated with a centralized server-based approach. With extensive experiments and analysis, we evaluate classical federated learning (CFL) and QFL in a distributed setting and demonstrate the practicality and benefits of the proposed design. Our theoretical analysis and discussions develop a genuinely decentralized financial system essential for the Metaverse. Furthermore, we present the application of blockchain-based QFL in a hybrid metaverse powered by a metaverse observer and world model. Our implementation details and code are publicly available 1.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
  2. Y. Kwak et al., “Quantum distributed deep learning architectures: Models, discussions, and applications.” [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405959522001138
  3. A. Abbas et al., “The power of quantum neural networks,” vol. 1, no. 6, pp. 403–409, comment: 25 pages, 10 figures. [Online]. Available: http://arxiv.org/abs/2011.00027
  4. S. R. Pokhrel and J. Choi, “Federated Learning With Blockchain for Autonomous Vehicles: Analysis and Design Challenges,” vol. 68, no. 8, pp. 4734–4746.
  5. S. R. Pokhrel, “Blockchain Brings Trust to Collaborative Drones and LEO Satellites: An Intelligent Decentralized Learning in the Space,” vol. 21, no. 22, pp. 25 331–25 339.
  6. H. T. Larasati, M. Firdaus, and H. Kim, “Quantum Federated Learning: Remarks and Challenges,” in 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 1–5.
  7. R. Kaewpuang, M. Xu, D. Niyato, H. Yu, Z. Xiong, and X. S. Shen, “Adaptive resource allocation in quantum key distribution (QKD) for federated learning.” [Online]. Available: http://arxiv.org/abs/2208.11270
  8. C.-H. H. Yang, J. Qi, S. Y.-C. Chen, P.-Y. Chen, S. M. Siniscalchi, X. Ma, and C.-H. Lee, “Decentralizing Feature Extraction with Quantum Convolutional Neural Network for Automatic Speech Recognition,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6523–6527.
  9. W. J. Yun et al., “Slimmable Quantum Federated Learning.”
  10. Q. Xia and Q. Li, “QuantumFed: A Federated Learning Framework for Collaborative Quantum Training,” in 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6.
  11. Q. Xia, Z. Tao, and Q. Li, “Defending Against Byzantine Attacks in Quantum Federated Learning,” in 2021 17th International Conference on Mobility, Sensing and Networking (MSN), pp. 145–152.
  12. Y. Zhang, C. Zhang, C. Zhang, L. Fan, B. Zeng, and Q. Yang, “Federated Learning with Quantum Secure Aggregation.” [Online]. Available: http://arxiv.org/abs/2207.07444
  13. D. Gurung, S. Pokhrel, and G. Li, “SECURE COMMUNICATION MODEL FOR QUANTUM FEDERATED LEARNING: A PROOF OF CONCEPT.” [Online]. Available: https://openreview.net/forum?id=xZGPLvRpf4N
  14. J. Qi, “Federated Quantum Natural Gradient Descent for Quantum Federated Learning,” comment: Published parts of book in Federated Learning. [Online]. Available: http://arxiv.org/abs/2209.00564
  15. W. Yamany, N. Moustafa, and B. Turnbull, “OQFL: An Optimized Quantum-Based Federated Learning Framework for Defending Against Adversarial Attacks in Intelligent Transportation Systems,” pp. 1–11.
  16. R. Huang, X. Tan, and Q. Xu, “Quantum Federated Learning With Decentralized Data,” vol. 28, pp. 1–10.
  17. M. Chehimi and W. Saad, “Quantum Federated Learning with Quantum Data,” in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8617–8621.
  18. S. R. Pokhrel, “Federated learning meets blockchain at 6G edge: A drone-assisted networking for disaster response,” in Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, ser. DroneCom ’20.   Association for Computing Machinery, pp. 49–54. [Online]. Available: https://doi.org/10.1145/3414045.3415949
  19. H. Chen et al., “Robust Blockchained Federated Learning with Model Validation and Proof-of-Stake Inspired Consensus,” comment: 8 pages, 7 figures, AAAI 2021 Workshop - Towards Robust, Secure and Efficient Machine Learning. [Online]. Available: http://arxiv.org/abs/2101.03300
  20. S. R. Pokhrel and J. Choi, “A Decentralized Federated Learning Approach for Connected Autonomous Vehicles,” in 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 1–6.
  21. H. Zhao, “Exact Decomposition of Quantum Channels for Non-IID Quantum Federated Learning,” comment: 6 pages excluding appendices and references. Code available at https://github.com/JasonZHM/quantum-fed-infer. [Online]. Available: http://arxiv.org/abs/2209.00768
  22. H. Duan, J. Li, S. Fan, Z. Lin, X. Wu, and W. Cai, “Metaverse for Social Good: A University Campus Prototype,” in Proceedings of the 29th ACM International Conference on Multimedia, pp. 153–161. [Online]. Available: http://arxiv.org/abs/2108.08985
  23. Q. Yang, Y. Zhao, H. Huang, Z. Xiong, J. Kang, and Z. Zheng, “Fusing Blockchain and AI With Metaverse: A Survey,” vol. 3, pp. 122–136.
  24. P. Bhattacharya, A. Verma, V. K. Prasad, S. Tanwar, B. Bhushan, B. C. Florea, D. D. Taralunga, F. Alqahtani, and A. Tolba, “Game-o-meta: Trusted federated learning scheme for p2p gaming metaverse beyond 5g networks,” Sensors, vol. 23, no. 9, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/9/4201
  25. L. Chang, Z. Zhang, P. Li, S. Xi, W. Guo, Y. Shen, Z. Xiong, J. Kang, D. Niyato, X. Qiao, and Y. Wu, “6G-Enabled Edge AI for Metaverse: Challenges, Methods, and Future Research Directions,” vol. 7, no. 2, pp. 107–121.
  26. J. Preskill, “Quantum Computing in the NISQ era and beyond,” vol. 2, p. 79, comment: 20 pages. Based on a Keynote Address at Quantum Computing for Business, 5 December 2017. (v3) Formatted for publication in Quantum, minor revisions. [Online]. Available: http://arxiv.org/abs/1801.00862
  27. A. Baevski, W.-N. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli, “Data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language.”
  28. “Encoding classical data into quantum states,” https://qml.baidu.com/tutorials/machine-learning/encoding-classical-data-into-quantum-states.html, (Accessed on 11/15/2022).
  29. S.-X. Zhang et al., “TensorCircuit: A Quantum Software Framework for the NISQ Era,” comment: Whitepaper for TensorCircuit, 43 pages, 11 figures, 8 tables. [Online]. Available: http://arxiv.org/abs/2205.10091
  30. W. J. Yun et al., “Slimmable Quantum Federated Learning.” [Online]. Available: https://arxiv.org/abs/2207.10221v1
  31. D. Arthur and P. Date, “A Hybrid Quantum-Classical Neural Network Architecture for Binary Classification,” comment: Added reference to section I. Fixed error in methods (Section III.C). [Online]. Available: http://arxiv.org/abs/2201.01820
  32. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, “Variational Quantum Algorithms,” vol. 3, no. 9, pp. 625–644, comment: Review Article. 33 pages, 7 figures. Updated to published version. [Online]. Available: http://arxiv.org/abs/2012.09265
  33. S. Jerbi, L. J. Fiderer, H. Poulsen Nautrup, J. M. Kübler, H. J. Briegel, and V. Dunjko, “Quantum machine learning beyond kernel methods,” vol. 14, no. 1, p. 517. [Online]. Available: https://www.nature.com/articles/s41467-023-36159-y
  34. S. Garg and G. Ramakrishnan. Advances in Quantum Deep Learning: An Overview. [Online]. Available: http://arxiv.org/abs/2005.04316
  35. X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.
  36. M. Weigold, J. Barzen, F. Leymann, and M. Salm, “Encoding patterns for quantum algorithms,” vol. 2, no. 4, pp. 141–152. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1049/qtc2.12032
  37. “Ieee standard for head-mounted display (hmd)-based virtual reality(vr) sickness reduction technology,” IEEE Std 3079-2020, pp. 1–74, 2021.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.