Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Quantum Federated Learning (2306.09912v4)

Published 16 Jun 2023 in cs.LG and quant-ph

Abstract: Quantum Federated Learning (QFL) is an emerging interdisciplinary field that merges the principles of Quantum Computing (QC) and Federated Learning (FL), with the goal of leveraging quantum technologies to enhance privacy, security, and efficiency in the learning process. Currently, there is no comprehensive survey for this interdisciplinary field. This review offers a thorough, holistic examination of QFL. We aim to provide a comprehensive understanding of the principles, techniques, and emerging applications of QFL. We discuss the current state of research in this rapidly evolving field, identify challenges and opportunities associated with integrating these technologies, and outline future directions and open research questions. We propose a unique taxonomy of QFL techniques, categorized according to their characteristics and the quantum techniques employed. As the field of QFL continues to progress, we can anticipate further breakthroughs and applications across various industries, driving innovation and addressing challenges related to data privacy, security, and resource optimization. This review serves as a first-of-its-kind comprehensive guide for researchers and practitioners interested in understanding and advancing the field of QFL.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com