Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Taming Small-sample Bias in Low-budget Active Learning (2306.11056v1)

Published 19 Jun 2023 in cs.LG

Abstract: Active learning (AL) aims to minimize the annotation cost by only querying a few informative examples for each model training stage. However, training a model on a few queried examples suffers from the small-sample bias. In this paper, we address this small-sample bias issue in low-budget AL by exploring a regularizer called Firth bias reduction, which can provably reduce the bias during the model training process but might hinder learning if its coefficient is not adaptive to the learning progress. Instead of tuning the coefficient for each query round, which is sensitive and time-consuming, we propose the curriculum Firth bias reduction (CHAIN) that can automatically adjust the coefficient to be adaptive to the training process. Under both deep learning and linear model settings, experiments on three benchmark datasets with several widely used query strategies and hyperparameter searching methods show that CHAIN can be used to build more efficient AL and can substantially improve the progress made by each active learning query.

Summary

We haven't generated a summary for this paper yet.