Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active$^2$ Learning: Actively reducing redundancies in Active Learning methods for Sequence Tagging and Machine Translation (2103.06490v2)

Published 11 Mar 2021 in cs.CL, cs.AI, cs.HC, cs.LG, and cs.NE

Abstract: While deep learning is a powerful tool for NLP problems, successful solutions to these problems rely heavily on large amounts of annotated samples. However, manually annotating data is expensive and time-consuming. Active Learning (AL) strategies reduce the need for huge volumes of labeled data by iteratively selecting a small number of examples for manual annotation based on their estimated utility in training the given model. In this paper, we argue that since AL strategies choose examples independently, they may potentially select similar examples, all of which may not contribute significantly to the learning process. Our proposed approach, Active$\mathbf{2}$ Learning (A$\mathbf{2}$L), actively adapts to the deep learning model being trained to eliminate further such redundant examples chosen by an AL strategy. We show that A$\mathbf{2}$L is widely applicable by using it in conjunction with several different AL strategies and NLP tasks. We empirically demonstrate that the proposed approach is further able to reduce the data requirements of state-of-the-art AL strategies by an absolute percentage reduction of $\approx\mathbf{3-25\%}$ on multiple NLP tasks while achieving the same performance with no additional computation overhead.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Rishi Hazra (15 papers)
  2. Parag Dutta (5 papers)
  3. Shubham Gupta (64 papers)
  4. Mohammed Abdul Qaathir (2 papers)
  5. Ambedkar Dukkipati (76 papers)
Citations (8)