Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model (2306.09402v1)

Published 15 Jun 2023 in cond-mat.str-el

Abstract: Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo coupling $J_K$ at fixed doping $x$. At large positive $J_K$, we confirm the expected conventional Luttinger liquid phase with $2k_F=\frac{1+x}{2}$ (in units of $2\pi$), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In the $J_K \leq 0$ side, our simulation finds the existence of a fractional Luttinger liquid (LL*) phase with $2k_F=\frac{x}{2}$, accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL*) phase in higher dimensions. The LL* phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positive $J_K$. Then we mainly focus on the `critical regime' between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) of $J_K$, the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around $0.035 J$) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponent $z=+\infty$. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.