Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dark Matter from a Radiative Inverse Seesaw Majoron Model (2306.08453v2)

Published 14 Jun 2023 in hep-ph

Abstract: We propose a Majoron-like extension of the Standard Model with an extra global $U(1)_X$-symmetry where neutrino masses are generated through an inverse seesaw mechanism at the 1-loop level. In contrast to the tree-level inverse seesaw, our framework contains dark matter (DM) candidates stabilized by a residual $\mathcal{Z}_2$-symmetry surviving spontaneous breaking of the $U(1)_X$-group. We explore the case in which the DM is a Majorana fermion. Furthermore, we provide parameter space regions allowed by current experimental constraints coming from the dark matter relic abundance, (in)direct detection, and charged lepton flavor violation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. P. Minkowski, “μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays?,” Phys. Lett. B 67 (1977) 421–428.
  2. T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C 7902131 (1979) 95–99.
  3. S. L. Glashow, “The Future of Elementary Particle Physics,” NATO Sci. Ser. B 61 (1980) 687.
  4. R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912.
  5. M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories,” Conf. Proc. C 790927 (1979) 315–321, arXiv:1306.4669 [hep-th].
  6. J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D 22 (1980) 2227.
  7. J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” Phys. Rev. D 25 (1982) 774.
  8. Y. Cai, J. Herrero-García, M. A. Schmidt, A. Vicente, and R. R. Volkas, “From the trees to the forest: a review of radiative neutrino mass models,” Front. in Phys. 5 (2017) 63, arXiv:1706.08524 [hep-ph].
  9. S. M. Boucenna, S. Morisi, and J. W. F. Valle, “The low-scale approach to neutrino masses,” Adv. High Energy Phys. 2014 (2014) 831598, arXiv:1404.3751 [hep-ph].
  10. D. Wyler and L. Wolfenstein, “Massless Neutrinos in Left-Right Symmetric Models,” Nucl. Phys. B 218 (1983) 205–214.
  11. R. N. Mohapatra and J. W. F. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” Phys. Rev. D 34 (1986) 1642.
  12. M. C. Gonzalez-Garcia and J. W. F. Valle, “Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models,” Phys. Lett. B 216 (1989) 360–366.
  13. A. Abada and M. Lucente, “Looking for the minimal inverse seesaw realisation,” Nucl. Phys. B 885 (2014) 651–678, arXiv:1401.1507 [hep-ph].
  14. M. C. Gonzalez-Garcia and J. W. F. Valle, “Enhanced lepton flavor violation with massless neutrinos: A Study of muon and tau decays,” Mod. Phys. Lett. A 7 (1992) 477–488.
  15. E. Ma, “Radiative inverse seesaw mechanism for nonzero neutrino mass,” Phys. Rev. D 80 (2009) 013013, arXiv:0904.4450 [hep-ph].
  16. F. Bazzocchi, “Minimal Dynamical Inverse See Saw,” Phys. Rev. D 83 (2011) 093009, arXiv:1011.6299 [hep-ph].
  17. Y. Kajiyama, H. Okada, and T. Toma, “Light Dark Matter Candidate in B−L𝐵𝐿B-Litalic_B - italic_L Gauged Radiative Inverse Seesaw,” Eur. Phys. J. C 73 no. 3, (2013) 2381, arXiv:1210.2305 [hep-ph].
  18. H. Okada and T. Toma, “Fermionic Dark Matter in Radiative Inverse Seesaw Model with U⁢(1)B−L𝑈subscript1𝐵𝐿U(1)_{B-L}italic_U ( 1 ) start_POSTSUBSCRIPT italic_B - italic_L end_POSTSUBSCRIPT,” Phys. Rev. D 86 (2012) 033011, arXiv:1207.0864 [hep-ph].
  19. S. S. C. Law and K. L. McDonald, “Inverse seesaw and dark matter in models with exotic lepton triplets,” Phys. Lett. B 713 (2012) 490–494, arXiv:1204.2529 [hep-ph].
  20. A. Ahriche, S. M. Boucenna, and S. Nasri, “Dark Radiative Inverse Seesaw Mechanism,” Phys. Rev. D 93 no. 7, (2016) 075036, arXiv:1601.04336 [hep-ph].
  21. A. E. Cárcamo Hernández, S. Kovalenko, H. N. Long, and I. Schmidt, “A variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern,” JHEP 07 (2018) 144, arXiv:1705.09169 [hep-ph].
  22. A. E. Cárcamo Hernández, S. Kovalenko, J. W. F. Valle, and C. A. Vaquera-Araujo, “Neutrino predictions from a left-right symmetric flavored extension of the standard model,” JHEP 02 (2019) 065, arXiv:1811.03018 [hep-ph].
  23. S. Mandal, N. Rojas, R. Srivastava, and J. W. F. Valle, “Dark matter as the origin of neutrino mass in the inverse seesaw mechanism,” Phys. Lett. B 821 (2021) 136609, arXiv:1907.07728 [hep-ph].
  24. N. Rojas, R. Srivastava, and J. W. F. Valle, “Scotogenic origin of the Inverse Seesaw Mechanism,” arXiv:1907.07728 [hep-ph].
  25. A. E. Cárcamo Hernández, D. T. Huong, and H. N. Long, “Minimal model for the fermion flavor structure, mass hierarchy, dark matter, leptogenesis, and the electron and muon anomalous magnetic moments,” Phys. Rev. D 102 no. 5, (2020) 055002, arXiv:1910.12877 [hep-ph].
  26. A. E. C. Hernández and I. Schmidt, “A renormalizable left-right symmetric model with low scale seesaw mechanisms,” arXiv:2101.02718 [hep-ph].
  27. A. E. Cárcamo Hernández, C. Espinoza, J. Carlos Gómez-Izquierdo, and M. Mondragón, “Fermion masses and mixings, dark matter, leptogenesis and g−2𝑔2g-2italic_g - 2 muon anomaly in an extended 2HDM with inverse seesaw,” arXiv:2104.02730 [hep-ph].
  28. A. Abada, N. Bernal, A. E. C. Hernández, X. Marcano, and G. Piazza, “Gauged inverse seesaw from dark matter,” Eur. Phys. J. C 81 no. 8, (2021) 758, arXiv:2107.02803 [hep-ph].
  29. C. Bonilla, A. E. Cárcamo Hernández, S. Kovalenko, H. Lee, R. Pasechnik, and I. Schmidt, “Fermion mass hierarchy in an extended left-right symmetric model,” arXiv:2305.11967 [hep-ph].
  30. C. Garcia-Cely, A. Ibarra, and E. Molinaro, “Cosmological and astrophysical signatures of dark matter annihilations into pseudo-Goldstone bosons,” JCAP 02 (2014) 032, arXiv:1312.3578 [hep-ph].
  31. M. E. Catano, R. Martinez, and F. Ochoa, “Neutrino masses in a 331 model with right-handed neutrinos without doubly charged Higgs bosons via inverse and double seesaw mechanisms,” Phys. Rev. D 86 (2012) 073015, arXiv:1206.1966 [hep-ph].
  32. E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys. Rev. D 73 (2006) 077301, arXiv:hep-ph/0601225.
  33. N. Bernal, A. E. Cárcamo Hernández, I. de Medeiros Varzielas, and S. Kovalenko, “Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism,” JHEP 05 (2018) 053, arXiv:1712.02792 [hep-ph].
  34. C. Garcia-Cely, A. Ibarra, and E. Molinaro, “Dark matter production from Goldstone boson interactions and implications for direct searches and dark radiation,” JCAP 11 (2013) 061, arXiv:1310.6256 [hep-ph].
  35. G. Belanger, F. Boudjema, and A. Pukhov, “micrOMEGAs : a code for the calculation of Dark Matter properties in generic models of particle interaction,” in Theoretical Advanced Study Institute in Elementary Particle Physics: The Dark Secrets of the Terascale, pp. 739–790. 2013. arXiv:1402.0787 [hep-ph].
  36. A. Falkowski, C. Gross, and O. Lebedev, “A second Higgs from the Higgs portal,” JHEP 05 (2015) 057, arXiv:1502.01361 [hep-ph].
  37. XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].
  38. LZ Collaboration, J. Aalbers et al., “First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment,” arXiv:2207.03764 [hep-ex].
  39. XENON Collaboration, E. Aprile et al., “Projected WIMP sensitivity of the XENONnT dark matter experiment,” JCAP 11 (2020) 031, arXiv:2007.08796 [physics.ins-det].
  40. T. Robens and T. Stefaniak, “Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1,” Eur. Phys. J. C 75 (2015) 104, arXiv:1501.02234 [hep-ph].
  41. LHC Higgs Cross Section Working Group Collaboration, S. Dittmaier et al., “Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables,” arXiv:1101.0593 [hep-ph].
  42. A. Reinert and M. W. Winkler, “A Precision Search for WIMPs with Charged Cosmic Rays,” JCAP 01 (2018) 055, arXiv:1712.00002 [astro-ph.HE].
  43. CTA Collaboration, A. Acharyya et al., “Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre,” JCAP 01 (2021) 057, arXiv:2007.16129 [astro-ph.HE].
  44. P. Langacker and D. London, “Lepton Number Violation and Massless Nonorthogonal Neutrinos,” Phys. Rev. D 38 (1988) 907.
  45. L. Lavoura, “General formulae for f⁢(1)→f⁢(2)+γ→𝑓1𝑓2𝛾f(1)\to f(2)+\gammaitalic_f ( 1 ) → italic_f ( 2 ) + italic_γ,” Eur. Phys. J. C 29 (2003) 191–195, arXiv:hep-ph/0302221.
  46. L. T. Hue, L. D. Ninh, T. T. Thuc, and N. T. T. Dat, “Exact one-loop results for li→lj⁢γ→subscript𝑙𝑖subscript𝑙𝑗𝛾l_{i}\to l_{j}\gammaitalic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT → italic_l start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_γ in 3-3-1 models,” Eur. Phys. J. C 78 no. 2, (2018) 128, arXiv:1708.09723 [hep-ph].
  47. MEG Collaboration, A. M. Baldini et al., “Search for the lepton flavour violating decay μ+→e+⁢γ→superscript𝜇superscripte𝛾\mu^{+}\rightarrow\mathrm{e}^{+}\gammaitalic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → roman_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_γ with the full dataset of the MEG experiment,” Eur. Phys. J. C 76 no. 8, (2016) 434, arXiv:1605.05081 [hep-ex].
  48. M. Maniatis, A. von Manteuffel, O. Nachtmann, and F. Nagel, “Stability and symmetry breaking in the general two-Higgs-doublet model,” Eur. Phys. J. C 48 (2006) 805–823, arXiv:hep-ph/0605184.
  49. G. Bhattacharyya and D. Das, “Scalar sector of two-Higgs-doublet models: A minireview,” Pramana 87 no. 3, (2016) 40, arXiv:1507.06424 [hep-ph].
  50. P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, “2020 global reassessment of the neutrino oscillation picture,” JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].
  51. F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, and A. Palazzo, “Global constraints on absolute neutrino masses and their ordering,” Phys. Rev. D 95 no. 9, (2017) 096014, arXiv:2003.08511 [hep-ph]. [Addendum: Phys.Rev.D 101, 116013 (2020)].
  52. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” JHEP 09 (2020) 178, arXiv:2007.14792 [hep-ph].
  53. J. A. Casas and A. Ibarra, “Oscillating neutrinos and μ→e,γ→𝜇𝑒𝛾\mu\to e,\gammaitalic_μ → italic_e , italic_γ,” Nucl. Phys. B 618 (2001) 171–204, arXiv:hep-ph/0103065.
  54. A. Ibarra and G. G. Ross, “Neutrino phenomenology: The Case of two right-handed neutrinos,” Phys. Lett. B 591 (2004) 285–296, arXiv:hep-ph/0312138.
  55. D. Restrepo and A. Rivera, “Phenomenological consistency of the singlet-triplet scotogenic model,” JHEP 04 (2020) 134, arXiv:1907.11938 [hep-ph].
  56. I. Cordero-Carrión, M. Hirsch, and A. Vicente, “General parametrization of Majorana neutrino mass models,” Phys. Rev. D 101 no. 7, (2020) 075032, arXiv:1912.08858 [hep-ph].
  57. M. J. Dolan, T. P. Dutka, and R. R. Volkas, “Dirac-Phase Thermal Leptogenesis in the extended Type-I Seesaw Model,” JCAP 06 (2018) 012, arXiv:1802.08373 [hep-ph].
  58. A. E. C. Hernández, D. T. Huong, and I. Schmidt, “Universal inverse seesaw mechanism as a source of the SM fermion mass hierarchy,” Eur. Phys. J. C 82 no. 1, (2022) 63, arXiv:2109.12118 [hep-ph].
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.