Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Transferable Machine Learning Approach for Predicting Electronic Structures of Charged Defects (2306.08017v1)

Published 13 Jun 2023 in physics.comp-ph and cond-mat.mtrl-sci

Abstract: The study of the electronic properties of charged defects is crucial for our understanding of various electrical properties of materials. However, the high computational cost of density functional theory (DFT) hinders the research on large defect models. In this study, we present an E(3) equivariant graph neural network framework (HamGNN-Q), which can predict the tight-binding Hamiltonian matrices for various defect types with different charges using only one set of network parameters. By incorporating features of background charge into the element representation, HamGNN-Q enables a direct mapping from structure and background charge to the electronic Hamiltonian matrix of charged defect systems without DFT calculation. We demonstrate the model's high precision and transferability through testing on GaAs systems with various charged defect configurations. Our approach provides a practical solution for accelerating charged defect electronic structure calculations and advancing the design of materials with tailored electronic properties.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.