$T\bar{T}$-deformed Entanglement Entropy for Integrable Quantum Field Theory (2306.07784v2)
Abstract: We calculate the $T\bar{T}$-deformed entanglement entropy for integrable quantum field theories (IQFTs) using the form factor bootstrap approach. We solve the form factor bootstrap axioms for the branch-point twist fields and obtain the deformed form factors. Using these form factors, we compute the deformed von Neuman entropy up to two particle contributions. The solution of the form factor axioms is not unique. We find that for the simplest solution of the bootstrap axioms, the UV limit of the entanglement entropy takes the same form as the undeformed one, but the effective central charge is deformed. For solutions with additional CDD-like factors, we can have different behaviors. The IR corrections, which only depends on the particle spectrum is untouched.
- F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B 915 (2017) 363–383, arXiv:1608.05499 [hep-th].
- A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10 (2016) 112, arXiv:1608.05534 [hep-th].
- S. Dubovsky, V. Gorbenko, and M. Mirbabayi, “Asymptotic fragility, near AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 09 (2017) 136, arXiv:1706.06604 [hep-th].
- S. Dubovsky, V. Gorbenko, and G. Hernández-Chifflet, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG partition function from topological gravity,” JHEP 09 (2018) 158, arXiv:1805.07386 [hep-th].
- J. Cardy, “The TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry,” JHEP 10 (2018) 186, arXiv:1801.06895 [hep-th].
- E. A. Coleman, J. Aguilera-Damia, D. Z. Freedman, and R. M. Soni, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG -deformed actions and (1,1) supersymmetry,” JHEP 10 (2019) 080, arXiv:1906.05439 [hep-th].
- A. J. Tolley, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations, massive gravity and non-critical strings,” JHEP 06 (2020) 050, arXiv:1911.06142 [hep-th].
- N. Callebaut, J. Kruthoff, and H. Verlinde, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT as a non-critical string,” JHEP 04 (2020) 084, arXiv:1910.13578 [hep-th].
- N. Benjamin, S. Collier, J. Kruthoff, H. Verlinde, and M. Zhang, “S-duality in TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFT,” JHEP 05 (2023) 140, arXiv:2302.09677 [hep-th].
- M. Baggio and A. Sfondrini, “Strings on NS-NS Backgrounds as Integrable Deformations,” Phys. Rev. D 98 no. 2, (2018) 021902, arXiv:1804.01998 [hep-th].
- A. Sfondrini and S. J. van Tongeren, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations as TsT𝑇𝑠𝑇TsTitalic_T italic_s italic_T transformations,” Phys. Rev. D 101 no. 6, (2020) 066022, arXiv:1908.09299 [hep-th].
- L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2018) 010, arXiv:1611.03470 [hep-th].
- M. Guica and R. Monten, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and the mirage of a bulk cutoff,” SciPost Phys. 10 no. 2, (2021) 024, arXiv:1906.11251 [hep-th].
- P. Kraus, J. Liu, and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 07 (2018) 027, arXiv:1801.02714 [hep-th].
- T. Hartman, J. Kruthoff, E. Shaghoulian, and A. Tajdini, “Holography at finite cutoff with a T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT deformation,” JHEP 03 (2019) 004, arXiv:1807.11401 [hep-th].
- M. Taylor, “TT deformations in general dimensions,” arXiv:1805.10287 [hep-th].
- P. Caputa, S. Datta, and V. Shyam, “Sphere partition functions \& cut-off AdS,” JHEP 05 (2019) 112, arXiv:1902.10893 [hep-th].
- P. Caputa, P. Caputa, S. Datta, S. Datta, Y. Jiang, Y. Jiang, P. Kraus, and P. Kraus, “Geometrizing TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 03 (2021) 140, arXiv:2011.04664 [hep-th]. [Erratum: JHEP 09, 110 (2022)].
- V. Gorbenko, E. Silverstein, and G. Torroba, “dS/dS and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 03 (2019) 085, arXiv:1811.07965 [hep-th].
- A. Lewkowycz, J. Liu, E. Silverstein, and G. Torroba, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG and EE, with implications for (A)dS subregion encodings,” JHEP 04 (2020) 152, arXiv:1909.13808 [hep-th].
- D. J. Gross, J. Kruthoff, A. Rolph, and E. Shaghoulian, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG in AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and Quantum Mechanics,” Phys. Rev. D 101 no. 2, (2020) 026011, arXiv:1907.04873 [hep-th].
- D. J. Gross, J. Kruthoff, A. Rolph, and E. Shaghoulian, “Hamiltonian deformations in quantum mechanics, TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, and the SYK model,” Phys. Rev. D 102 no. 4, (2020) 046019, arXiv:1912.06132 [hep-th].
- A. Giveon, N. Itzhaki, and D. Kutasov, “TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG and LST,” JHEP 07 (2017) 122, arXiv:1701.05576 [hep-th].
- S. Chakraborty, A. Giveon, and D. Kutasov, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG, black holes and negative strings,” JHEP 09 (2020) 057, arXiv:2006.13249 [hep-th].
- S. Chakraborty, A. Giveon, and D. Kutasov, “Strings in irrelevant deformations of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 11 (2020) 057, arXiv:2009.03929 [hep-th].
- A. Giveon, N. Itzhaki, and D. Kutasov, “A solvable irrelevant deformation of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 12 (2017) 155, arXiv:1707.05800 [hep-th].
- L. Apolo and W. Song, “Strings on warped AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT via TJ¯T¯J\mathrm{T}\bar{\mathrm{J}}roman_T over¯ start_ARG roman_J end_ARG deformations,” JHEP 10 (2018) 165, arXiv:1806.10127 [hep-th].
- L. Apolo, S. Detournay, and W. Song, “TsT, TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and black strings,” JHEP 06 (2020) 109, arXiv:1911.12359 [hep-th].
- L. Apolo and W. Song, “TsT, black holes, and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG + JT¯𝐽¯𝑇J\overline{T}italic_J over¯ start_ARG italic_T end_ARG + TJ¯𝑇¯𝐽T\overline{J}italic_T over¯ start_ARG italic_J end_ARG,” JHEP 04 (2022) 177, arXiv:2111.02243 [hep-th].
- L. Apolo, P.-X. Hao, W.-X. Lai, and W. Song, “Glue-on AdS holography for TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs,” arXiv:2303.04836 [hep-th].
- Y. Li and Y. Zhou, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT in the large central charge sector: correlators of energy-momentum tensor,” JHEP 12 (2020) 168, arXiv:2005.01693 [hep-th].
- S. Hirano and M. Shigemori, “Random boundary geometry and gravity dual of TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 11 (2020) 108, arXiv:2003.06300 [hep-th].
- B. Pozsgay, Y. Jiang, and G. Takács, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformation and long range spin chains,” JHEP 03 (2020) 092, arXiv:1911.11118 [hep-th].
- E. Marchetto, A. Sfondrini, and Z. Yang, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformations and Integrable Spin Chains,” Phys. Rev. Lett. 124 no. 10, (2020) 100601, arXiv:1911.12315 [hep-th].
- F. Aramini, N. Brizio, S. Negro, and R. Tateo, “Deforming the ODE/IM correspondence with TT¯T¯T\textrm{T}\overline{\textrm{T}}T over¯ start_ARG T end_ARG,” JHEP 03 (2023) 084, arXiv:2212.13957 [hep-th].
- P. Ceschin, R. Conti, and R. Tateo, “TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-deformed nonlinear Schrödinger,” JHEP 04 (2021) 121, arXiv:2012.12760 [hep-th].
- R. Conti, S. Negro, and R. Tateo, “Conserved currents and TT¯sTsubscript¯T𝑠\text{T}\bar{\text{T}}_{s}T over¯ start_ARG T end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT irrelevant deformations of 2D integrable field theories,” JHEP 11 (2019) 120, arXiv:1904.09141 [hep-th].
- R. Conti, S. Negro, and R. Tateo, “The TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation and its geometric interpretation,” JHEP 02 (2019) 085, arXiv:1809.09593 [hep-th].
- Y. Jiang, “TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-deformed 1d Bose gas,” SciPost Phys. 12 no. 6, (2022) 191, arXiv:2011.00637 [hep-th].
- D. Hansen, Y. Jiang, and J. Xu, “Geometrizing non-relativistic bilinear deformations,” JHEP 04 (2021) 186, arXiv:2012.12290 [hep-th].
- B. Doyon, J. Durnin, and T. Yoshimura, “The Space of Integrable Systems from Generalised TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-Deformations,” SciPost Phys. 13 no. 3, (2022) 072, arXiv:2105.03326 [hep-th].
- J. Cardy and B. Doyon, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations and the width of fundamental particles,” JHEP 04 (2022) 136, arXiv:2010.15733 [hep-th].
- M. Medenjak, G. Policastro, and T. Yoshimura, “Thermal transport in TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed conformal field theories: From integrability to holography,” Phys. Rev. D 103 no. 6, (2021) 066012, arXiv:2010.15813 [cond-mat.stat-mech].
- M. Medenjak, G. Policastro, and T. Yoshimura, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-Deformed Conformal Field Theories out of Equilibrium,” Phys. Rev. Lett. 126 no. 12, (2021) 121601, arXiv:2011.05827 [cond-mat.stat-mech].
- C. Ahn and A. LeClair, “On the classification of UV completions of integrable TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations of CFT,” JHEP 08 (2022) 179, arXiv:2205.10905 [hep-th].
- A. LeClair, “deformation of the Ising model and its ultraviolet completion,” J. Stat. Mech. 2111 (2021) 113104, arXiv:2107.02230 [hep-th].
- S. Datta and Y. Jiang, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed partition functions,” JHEP 08 (2018) 106, arXiv:1806.07426 [hep-th].
- O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular invariance and uniqueness of TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT,” JHEP 01 (2019) 086, arXiv:1808.02492 [hep-th].
- O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular covariance and uniqueness of JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFTs,” JHEP 01 (2019) 085, arXiv:1808.08978 [hep-th].
- O. Aharony and T. Vaknin, “The TT* deformation at large central charge,” JHEP 05 (2018) 166, arXiv:1803.00100 [hep-th].
- S. He, J.-R. Sun, and Y. Sun, “The correlation function of (1,1) and (2,2) supersymmetric theories with TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 04 (2020) 100, arXiv:1912.11461 [hep-th].
- S. He and Y. Sun, “Correlation functions of CFTs on a torus with a TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” Phys. Rev. D 102 no. 2, (2020) 026023, arXiv:2004.07486 [hep-th].
- S. He, “Note on higher-point correlation functions of the TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG or JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFTs,” Sci. China Phys. Mech. Astron. 64 no. 9, (2021) 291011, arXiv:2012.06202 [hep-th].
- S. Hirano, T. Nakajima, and M. Shigemori, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation of stress-tensor correlators from random geometry,” JHEP 04 (2021) 270, arXiv:2012.03972 [hep-th].
- S. He, Y. Li, Y.-Z. Li, and Y. Zhang, “Holographic torus correlators of stress tensor in AdS3/CFT2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” arXiv:2303.13280 [hep-th].
- J. Cardy, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation of correlation functions,” JHEP 12 (2019) 160, arXiv:1907.03394 [hep-th].
- M. Guica, “A definition of primary operators in JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” SciPost Phys. 13 no. 3, (2022) 045, arXiv:2112.14736 [hep-th].
- W. Cui, H. Shu, W. Song, and J. Wang, “Correlation Functions in the TsT/TT¯𝑇¯𝑇T{\bar{T}}italic_T over¯ start_ARG italic_T end_ARG Correspondence,” arXiv:2304.04684 [hep-th].
- O. Aharony and N. Barel, “Correlation Functions in TT¯T¯T\textrm{T}\bar{\textrm{T}}T over¯ start_ARG T end_ARG-deformed Conformal Field Theories,” arXiv:2304.14091 [hep-th].
- M. Karowski and P. Weisz, “Exact Form-Factors in (1+1)-Dimensional Field Theoretic Models with Soliton Behavior,” Nucl. Phys. B 139 (1978) 455–476.
- 1992.
- G. Delfino, “Integrable field theory and critical phenomena: The Ising model in a magnetic field,” J. Phys. A 37 (2004) R45, arXiv:hep-th/0312119.
- O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Completing the Bootstrap Program for TT¯T¯T\mathrm{T}\bar{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-Deformed Massive Integrable Quantum Field Theories,” arXiv:2305.17068 [hep-th].
- O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Form Factors and Correlation Functions of TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-Deformed Integrable Quantum Field Theories,” arXiv:2306.01640 [hep-th].
- O. A. Castro-Alvaredo, S. Negro, and I. M. Szécsényi, “On the Representation of Minimal Form Factors in Integrable Quantum Field Theory,” arXiv:2311.16955 [hep-th].
- W. Donnelly and V. Shyam, “Entanglement entropy and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” Phys. Rev. Lett. 121 no. 13, (2018) 131602, arXiv:1806.07444 [hep-th].
- A. Banerjee, A. Bhattacharyya, and S. Chakraborty, “Entanglement Entropy for TT𝑇𝑇TTitalic_T italic_T deformed CFT in general dimensions,” Nucl. Phys. B 948 (2019) 114775, arXiv:1904.00716 [hep-th].
- S. Grieninger, “Entanglement entropy and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations beyond antipodal points from holography,” JHEP 11 (2019) 171, arXiv:1908.10372 [hep-th].
- W. Donnelly, E. LePage, Y.-Y. Li, A. Pereira, and V. Shyam, “Quantum corrections to finite radius holography and holographic entanglement entropy,” JHEP 05 (2020) 006, arXiv:1909.11402 [hep-th].
- B. Chen, L. Chen, and P.-X. Hao, “Entanglement entropy in TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFT,” Phys. Rev. D 98 no. 8, (2018) 086025, arXiv:1807.08293 [hep-th].
- Y. Sun and J.-R. Sun, “Note on the Rényi entropy of 2D perturbed fermions,” Phys. Rev. D 99 no. 10, (2019) 106008, arXiv:1901.08796 [hep-th].
- H.-S. Jeong, K.-Y. Kim, and M. Nishida, “Entanglement and Rényi entropy of multiple intervals in TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFT and holography,” Phys. Rev. D 100 no. 10, (2019) 106015, arXiv:1906.03894 [hep-th].
- S. He and H. Shu, “Correlation functions, entanglement and chaos in the TT¯/JT¯𝑇¯𝑇𝐽¯𝑇T\overline{T}/J\overline{T}italic_T over¯ start_ARG italic_T end_ARG / italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 02 (2020) 088, arXiv:1907.12603 [hep-th].
- S. Chakraborty, A. Giveon, N. Itzhaki, and D. Kutasov, “Entanglement beyond AdS,” Nucl. Phys. B 935 (2018) 290–309, arXiv:1805.06286 [hep-th].
- S. Chakraborty and A. Hashimoto, “Entanglement entropy for TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG, JT¯J¯T\mathrm{J}\overline{\mathrm{T}}roman_J over¯ start_ARG roman_T end_ARG, TJ¯T¯J\mathrm{T}\overline{\mathrm{J}}roman_T over¯ start_ARG roman_J end_ARG deformed holographic CFT,” JHEP 02 (2021) 096, arXiv:2010.15759 [hep-th].
- M. Asrat and J. Kudler-Flam, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, the entanglement wedge cross section, and the breakdown of the split property,” Phys. Rev. D 102 no. 4, (2020) 045009, arXiv:2005.08972 [hep-th].
- H.-S. Jeong, W.-B. Pan, Y.-W. Sun, and Y.-T. Wang, “Holographic study of TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG like deformed HV QFTs: holographic entanglement entropy,” JHEP 02 (2023) 018, arXiv:2211.00518 [hep-th].
- K. Allameh, A. F. Astaneh, and A. Hassanzadeh, “Aspects of holographic entanglement entropy for TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs,” Phys. Lett. B 826 (2022) 136914, arXiv:2111.11338 [hep-th].
- M. He and Y. Sun, “Holographic entanglement entropy in TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed AdS3,” Nucl. Phys. B 990 (2023) 116190, arXiv:2301.04435 [hep-th].
- J. Tian, “On-shell action and Entanglement entropy of TT¯T¯T\text{T}\bar{\text{T}}T over¯ start_ARG T end_ARG-deformed Holographic CFTs,” arXiv:2306.01258 [hep-th].
- J. L. Cardy, O. A. Castro-Alvaredo, and B. Doyon, “Form factors of branch-point twist fields in quantum integrable models and entanglement entropy,” J. Statist. Phys. 130 (2008) 129–168, arXiv:0706.3384 [hep-th].
- H. M. Babujian, A. Fring, M. Karowski, and A. Zapletal, “Exact form-factors in integrable quantum field theories: The Sine-Gordon model,” Nucl. Phys. B 538 (1999) 535–586, arXiv:hep-th/9805185.
- G. Feverati, F. Ravanini, and G. Takacs, “Truncated conformal space at c = 1, nonlinear integral equation and quantization rules for multi - soliton states,” Phys. Lett. B 430 (1998) 264–273, arXiv:hep-th/9803104.
- V. P. Yurov and A. B. Zamolodchikov, “TRUNCATED CONFORMAL SPACE APPROACH TO SCALING LEE-YANG MODEL,” Int. J. Mod. Phys. A 5 (1990) 3221–3246.
- V. P. Yurov and A. B. Zamolodchikov, “Correlation functions of integrable 2-D models of relativistic field theory. Ising model,” Int. J. Mod. Phys. A 6 (1991) 3419–3440.
- O. A. Castro-Alvaredo and E. Levi, “Higher particle form factors of branch point twist fields in integrable quantum field theories,” J. Phys. A 44 (2011) 255401, arXiv:1103.2069 [hep-th].
- G. Delfino, P. Simonetti, and J. L. Cardy, “Asymptotic factorization of form-factors in two-dimensional quantum field theory,” Phys. Lett. B 387 (1996) 327–333, arXiv:hep-th/9607046.
- O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Entanglement entropy from form factors in TT¯T¯T\textrm{T}\overline{\textrm{T}}T over¯ start_ARG T end_ARG-deformed integrable quantum field theories,” JHEP 11 (2023) 129, arXiv:2306.11064 [hep-th].
- S. Ashkenazi, S. Chakraborty, Z. Ma, and T. Shachar, “Linear response of entanglement entropy to TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG in massive QFTs,” JHEP 04 (2023) 077, arXiv:2302.06688 [hep-th].
- G. Delfino, G. Mussardo, and P. Simonetti, “Statistical models with a line of defect,” Phys. Lett. B 328 (1994) 123–129, arXiv:hep-th/9403049.
- G. Delfino, G. Mussardo, and P. Simonetti, “Scattering theory and correlation functions in statistical models with a line of defect,” Nucl. Phys. B 432 (1994) 518–550, arXiv:hep-th/9409076.
- Y. Jiang, “Entanglement entropy in integrable field theories with line defects. Part I. Topological defect,” JHEP 07 (2017) 127, arXiv:1703.03562 [hep-th].
- Y. Jiang, “Entanglement Entropy in Integrable Field Theories with Line Defects II. Non-topological Defect,” JHEP 08 (2017) 013, arXiv:1703.04458 [hep-th].
- S. Ghoshal and A. B. Zamolodchikov, “Boundary S matrix and boundary state in two-dimensional integrable quantum field theory,” Int. J. Mod. Phys. A 9 (1994) 3841–3886, arXiv:hep-th/9306002. [Erratum: Int.J.Mod.Phys.A 9, 4353 (1994)].
- O. A. Castro-Alvaredo and B. Doyon, “Bi-partite entanglement entropy in massive QFT with a boundary: The Ising model,” J. Statist. Phys. 134 (2009) 105–145, arXiv:0810.0219 [hep-th].
- Y. Jiang, F. Loebbert, and D.-l. Zhong, “Irrelevant deformations with boundaries and defects,” J. Stat. Mech. 2204 no. 4, (2022) 043102, arXiv:2109.13180 [hep-th].
- O. Blondeau-Fournier, O. A. Castro-Alvaredo, and B. Doyon, “Universal scaling of the logarithmic negativity in massive quantum field theory,” J. Phys. A 49 no. 12, (2016) 125401, arXiv:1508.04026 [hep-th].
- L. Capizzi, O. A. Castro-Alvaredo, C. De Fazio, M. Mazzoni, and L. Santamaría-Sanz, “Symmetry resolved entanglement of excited states in quantum field theory. Part I. Free theories, twist fields and qubits,” JHEP 12 (2022) 127, arXiv:2203.12556 [hep-th].
- L. Capizzi, C. De Fazio, M. Mazzoni, L. Santamaría-Sanz, and O. A. Castro-Alvaredo, “Symmetry resolved entanglement of excited states in quantum field theory. Part II. Numerics, interacting theories and higher dimensions,” JHEP 12 (2022) 128, arXiv:2206.12223 [hep-th].
- L. Capizzi, M. Mazzoni, and O. A. Castro-Alvaredo, “Symmetry Resolved Entanglement of Excited States in Quantum Field Theory III: Bosonic and Fermionic Negativity,” arXiv:2302.02666 [hep-th].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.