Complexity of fermionic states (2306.07584v2)
Abstract: How much information a fermionic state contains? To address this fundamental question, we define the complexity of a particle-conserving many-fermion state as the entropy of its Fock space probability distribution, minimized over all Fock representations. The complexity characterizes the minimum computational and physical resources required to represent the state and store the information obtained from it by measurements. Alternatively, the complexity can be regarded a Fock space entanglement measure describing the intrinsic many-particle entanglement in the state. We establish universal lower bound for the complexity in terms of the single-particle correlation matrix eigenvalues and formulate a finite-size complexity scaling hypothesis. Remarkably, numerical studies on interacting lattice models suggest a general model-independent complexity hierarchy: ground states are exponentially less complex than average excited states which, in turn, are exponentially less complex than generic states in the Fock space. Our work has fundamental implications on how much information is encoded in fermionic states.
- Michael A. Nielsen, Mark R. Dowling, Mile Gu, and Andrew C. Doherty, “Quantum computation as geometry,” Science 311, 1133–1135 (2006), https://www.science.org/doi/pdf/10.1126/science.1121541 .
- Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- Leonard Susskind, “Computational complexity and black hole horizons,” Fortschritte der Physik 64, 24–43 (2016), https://onlinelibrary.wiley.com/doi/pdf/10.1002/prop.201500092 .
- Shira Chapman, Michal P. Heller, Hugo Marrochio, and Fernando Pastawski, “Toward a definition of complexity for quantum field theory states,” Phys. Rev. Lett. 120, 121602 (2018).
- Vijay Balasubramanian, Pawel Caputa, Javier M. Magan, and Qingyue Wu, “Quantum chaos and the complexity of spread of states,” Phys. Rev. D 106, 046007 (2022).
- U. Schollwöck, “The density-matrix renormalization group,” Rev. Mod. Phys. 77, 259–315 (2005).
- Román Orús, “Tensor networks for complex quantum systems,” Nature Reviews Physics 1, 538–550 (2019).
- R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467 (1982).
- Daniel González-Cuadra, Dolev Bluvstein, Marcin Kalinowski, Raphael Kaubruegger, Nishad Maskara, Piero Naldesi, Torsten V. Zache, Adam M. Kaufman, Mikhail D. Lukin, Hannes Pichler, Benoît Vermersch, Jun Ye, and Peter Zoller, “Fermionic quantum processing with programmable neutral atom arrays,” (2023), arXiv:2303.06985 [quant-ph] .
- Sergey B. Bravyi and Alexei Yu. Kitaev, “Fermionic quantum computation,” Annals of Physics 298, 210–226 (2002).
- Daniel S. Abrams and Seth Lloyd, “Simulation of many-body fermi systems on a universal quantum computer,” Phys. Rev. Lett. 79, 2586–2589 (1997).
- G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Quantum algorithms for fermionic simulations,” Phys. Rev. A 64, 022319 (2001).
- Luigi Amico, Rosario Fazio, Andreas Osterloh, and Vlatko Vedral, “Entanglement in many-body systems,” Rev. Mod. Phys. 80, 517–576 (2008).
- Per-Olov Löwdin, “Quantum theory of many-particle systems. i. physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction,” Phys. Rev. 97, 1474–1489 (1955).
- Douglas M. Collins, “Entropy maximizations on electron density,” Zeitschrift für Naturforschung A 48, 68–74 (1993).
- Rodolfo O. Esquivel, Ana L. Rodríguez, Robin P. Sagar, Minhhuy Hô, and Vedene H. Smith, “Physical interpretation of information entropy: Numerical evidence of the collins conjecture,” Phys. Rev. A 54, 259–265 (1996).
- Aurel Bulgac, Matthew Kafker, and Ibrahim Abdurrahman, “Measures of complexity and entanglement in many-fermion systems,” Phys. Rev. C 107, 044318 (2023).
- N. Gigena and R. Rossignoli, “Entanglement in fermion systems,” Phys. Rev. A 92, 042326 (2015).
- F. Benatti, R. Floreanini, F. Franchini, and U. Marzolino, “Entanglement in indistinguishable particle systems,” Physics Reports 878, 1–27 (2020), entanglement in indistinguishable particle systems.
- N. Gigena, M. Di Tullio, and R. Rossignoli, “One-body entanglement as a quantum resource in fermionic systems,” Phys. Rev. A 102, 042410 (2020).
- N. Gigena, M. Di Tullio, and R. Rossignoli, “Many-body entanglement in fermion systems,” Phys. Rev. A 103, 052424 (2021).
- C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal 27, 379–423 (1948).
- Benjamin Schumacher, “Quantum coding,” Phys. Rev. A 51, 2738–2747 (1995).
- J. Preskill, Lecture Notes for Physics 229:Quantum Information and Computation (CreateSpace Independent Publishing Platform, 2015).
- Yu Shi, “Quantum entanglement of identical particles,” Phys. Rev. A 67, 024301 (2003).
- Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
- J. Eisert, M. Cramer, and M. B. Plenio, “Colloquium: Area laws for the entanglement entropy,” Rev. Mod. Phys. 82, 277–306 (2010).
- Eugenio Bianchi, Lucas Hackl, Mario Kieburg, Marcos Rigol, and Lev Vidmar, “Volume-law entanglement entropy of typical pure quantum states,” PRX Quantum 3, 030201 (2022).
- John Schliemann, J. Ignacio Cirac, Marek Kuś, Maciej Lewenstein, and Daniel Loss, “Quantum correlations in two-fermion systems,” Phys. Rev. A 64, 022303 (2001).
- K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, “Quantum correlations in systems of indistinguishable particles,” Annals of Physics 299, 88–127 (2002).
- Murat Altunbulak and Alexander Klyachko, “The pauli principle revisited,” Communications in Mathematical Physics 282, 287–322 (2008).
- Christian Schilling, David Gross, and Matthias Christandl, “Pinning of fermionic occupation numbers,” Phys. Rev. Lett. 110, 040404 (2013).
- Robin Reuvers, “Generalized pauli constraints in large systems: The pauli principle dominates,” Journal of Mathematical Physics 62 (2021).
- N. Killoran, F. E. S. Steinhoff, and M. B. Plenio, “Converting nonclassicality into entanglement,” Phys. Rev. Lett. 116, 080402 (2016).
- Seungbeom Chin and Joonsuk Huh, “Generalized concurrence in boson sampling,” Scientific reports 8, 6101 (2018).
- J. M. Zhang and Marcus Kollar, “Optimal multiconfiguration approximation of an n𝑛nitalic_n-fermion wave function,” Phys. Rev. A 89, 012504 (2014).
- J. M. Zhang and Norbert J. Mauser, “Optimal slater-determinant approximation of fermionic wave functions,” Phys. Rev. A 94, 032513 (2016).
- Jiang-Min Zhang and Yu Liu, “Geometric entanglement in the Laughlin wave function,” New Journal of Physics 19, 083019 (2017), arXiv:1610.03904 [cond-mat.str-el] .
- Takahiro Orito and Ken-Ichiro Imura, “Multifractality and fock-space localization in many-body localized states: One-particle density matrix perspective,” Phys. Rev. B 103, 214206 (2021).
- Katharina Boguslawski, Paweł Tecmer, Örs Legeza, and Markus Reiher, “Entanglement measures for single- and multireference correlation effects,” The Journal of Physical Chemistry Letters 3, 3129–3135 (2012).
- Faluke Aikebaier, Teemu Ojanen, and Jose L. Lado, “Extracting electronic many-body correlations from local measurements with artificial neural networks,” SciPost Phys. Core 6, 030 (2023).
- Diego L. B. Ferreira, Thiago O. Maciel, Reinaldo O. Vianna, and Fernando Iemini, “Quantum correlations, entanglement spectrum, and coherence of the two-particle reduced density matrix in the extended hubbard model,” Phys. Rev. B 105, 115145 (2022).
- Soumya Bera, Henning Schomerus, Fabian Heidrich-Meisner, and Jens H. Bardarson, “Many-body localization characterized from a one-particle perspective,” Phys. Rev. Lett. 115, 046603 (2015).
- Piotr Migdał, Javier Rodriguez-Laguna, and Maciej Lewenstein, “Entanglement classes of permutation-symmetric qudit states: Symmetric operations suffice,” Phys. Rev. A 88, 012335 (2013).
- Maxime Debertolis, Serge Florens, and Izak Snyman, “Few-body nature of kondo correlated ground states,” Phys. Rev. B 103, 235166 (2021).
- Lev Vidmar and Marcos Rigol, “Entanglement entropy of eigenstates of quantum chaotic hamiltonians,” Phys. Rev. Lett. 119, 220603 (2017).
- M. Kliczkowski, R. Świętek, L. Vidmar, and M. Rigol, “Average entanglement entropy of midspectrum eigenstates of quantum-chaotic interacting hamiltonians,” (2023), arXiv:2303.13577 [cond-mat.stat-mech] .
- J. Eisert, “Entangling power and quantum circuit complexity,” Phys. Rev. Lett. 127, 020501 (2021).
- Zi-Wen Liu and Andreas Winter, “Many-body quantum magic,” PRX Quantum 3, 020333 (2022).
- M. Hebenstreit, R. Jozsa, B. Kraus, S. Strelchuk, and M. Yoganathan, “All pure fermionic non-gaussian states are magic states for matchgate computations,” Phys. Rev. Lett. 123, 080503 (2019).
- Peter J. Forrester, Log-Gases and Random Matrices (Princeton University Press, 2010).
- Y. Y. Atas and E. Bogomolny, “Multifractality of eigenfunctions in spin chains,” Phys. Rev. E 86, 021104 (2012).
- Nicolas Macé, Fabien Alet, and Nicolas Laflorencie, “Multifractal scalings across the many-body localization transition,” Phys. Rev. Lett. 123, 180601 (2019).
- Giuseppe De Tomasi and Ivan M. Khaymovich, “Multifractality meets entanglement: Relation for nonergodic extended states,” Phys. Rev. Lett. 124, 200602 (2020).
- Arnd Bäcker, Masudul Haque, and Ivan M. Khaymovich, “Multifractal dimensions for random matrices, chaotic quantum maps, and many-body systems,” Phys. Rev. E 100, 032117 (2019).
- Phillip C. Burke, Goran Nakerst, and Masudul Haque, “Assigning temperatures to eigenstates,” Phys. Rev. E 107, 024102 (2023).
- Phillip Weinberg and Marin Bukov, “QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains,” SciPost Phys. 2, 003 (2017).
- Phillip Weinberg and Marin Bukov, ‘‘QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins,” SciPost Phys. 7, 020 (2019).
- Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17, 261–272 (2020).
- D.J. Thouless, “Stability conditions and nuclear rotations in the hartree-fock theory,” Nuclear Physics 21, 225–232 (1960).
- Ian D. Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan, and Ryan Babbush, “Quantum simulation of electronic structure with linear depth and connectivity,” Phys. Rev. Lett. 120, 110501 (2018).
- Awad H Al-Mohy and Nicholas J Higham, “Computing the action of the matrix exponential, with an application to exponential integrators,” SIAM journal on scientific computing 33, 488–511 (2011).
- Nicholas J Higham and Awad H Al-Mohy, ‘‘Computing matrix functions,” Acta Numerica 19, 159–208 (2010).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.