Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exact partition function of the Potts model on the Sierpinski gasket and the Hanoi lattice (2306.06054v3)

Published 9 Jun 2023 in cond-mat.stat-mech, hep-th, math-ph, and math.MP

Abstract: We present an analytic study of the Potts model partition function on the Sierpinski and Hanoi lattices, which are self-similar lattices of triangular shape with non integer Hausdorff dimension. Both lattices are examples of non-trivial thermodynamics in less than two dimensions, where mean field theory does not apply. We used and explain a method based on ideas of graph theory and renormalization group theory to derive exact equations for appropriate variables that are similar to the restricted partition functions. We benchmark our method with Metropolis Monte Carlo simulations. The analysis of fixed points reveals information of location of the Fisher zeros and we provide a conjecture about the location of zeros in terms of the boundary of the basins of attraction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. J. Zinn-Justin, “Quantum field theory and critical phenomena,” Int. Ser. Monogr. Phys., vol. 113, pp. 1–1054, 2002.
  2. R. J. Baxter, Exactly solved models in statistical mechanics. 1982.
  3. F. Y. Wu, “The Potts model,” Rev. Mod. Phys., vol. 54, pp. 235–268, 1982. [Erratum: Rev.Mod.Phys. 55, 315–315 (1983)].
  4. 1994.
  5. J. L. Cardy, “Lectures on conformal invariance and percolation,” in New Trends of Mathematical Physics and Probability Theory, 3 2001.
  6. L. G. Yaffe and B. Svetitsky, “First Order Phase Transition in the SU(3) Gauge Theory at Finite Temperature,” Phys. Rev. D, vol. 26, p. 963, 1982.
  7. L. Onsager, “Crystal statistics. i. a two-dimensional model with an order-disorder transition,” Phys. Rev., vol. 65, pp. 117–149, Feb 1944.
  8. J. Salas and A. D. Sokal, “Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models VI. Square Lattice with Extra-Vertex Boundary Conditions,” Journal of Statistical Physics, vol. 144, pp. 1028–1122, Sept. 2011.
  9. S.-C. Chang and R. Shrock, “Transfer matrices for the partition function of the Potts model on lattice strips with toroidal and Klein-bottle boundary conditions,” Physica A Statistical Mechanics and its Applications, vol. 364, pp. 231–262, May 2006.
  10. S.-C. Chang and R. Shrock, “Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice,” Journal of Statistical Physics, vol. 130, pp. 1011–1024, Mar. 2008.
  11. D. Dhar, “Lattices of Effectively Nonintegral Dimensionality,” J. Math. Phys., vol. 18, pp. 577–585, 1977.
  12. D. Dhar, “Self‐avoiding random walks: Some exactly soluble cases,” Journal of Mathematical Physics, vol. 19, pp. 5–11, 08 2008.
  13. A. N. Berker and S. Ostlund, “Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering,” Journal of Physics C: Solid State Physics, vol. 12, p. 4961, nov 1979.
  14. D. Andelman and A. N. Berker, “Q𝑄Qitalic_Q State Potts Models in D𝐷Ditalic_D Dimensions: Migdal-kadanoff Approximation,” J. Phys. A, vol. 14, pp. L91–L96, 1981.
  15. M. Kaufman and R. B. Griffiths, “Exactly soluble ising models on hierarchical lattices,” Phys. Rev. B, vol. 24, pp. 496–498, Jul 1981.
  16. R. B. Griffiths and M. Kaufman, “Spin systems on hierarchical lattices. introduction and thermodynamic limit,” Phys. Rev. B, vol. 26, pp. 5022–5032, Nov 1982.
  17. S. R. McKay, A. N. Berker, and S. Kirkpatrick, “Spin-glass behavior in frustrated ising models with chaotic renormalization-group trajectories,” Phys. Rev. Lett., vol. 48, pp. 767–770, Mar 1982.
  18. A. N. Berker and S. R. McKay, “Hierarchical models and chaotic spin glasses,” Journal of Statistical Physics, vol. 36, pp. 787–793, Sept. 1984.
  19. M. Kaufman and R. B. Griffiths, “Spin systems on hierarchical lattices. ii. some examples of soluble models,” Phys. Rev. B, vol. 30, pp. 244–249, Jul 1984.
  20. Y. Gefen, A. Aharony, and B. B. Mandelbrot, “Phase transitions on fractals. i. quasi-linear lattices,” Journal of Physics A: Mathematical and General, vol. 16, p. 1267, apr 1983.
  21. Y. Gefen, A. Aharony, Y. Shapir, and B. B. Mandelbrot, “Phase transitions on fractals. ii. sierpinski gaskets,” Journal of Physics A: Mathematical and General, vol. 17, p. 435, feb 1984.
  22. B. Derrida, L. de Seze, and C. Itzykson, “Fractal structure of zeros in hierarchical models,” Journal of Statistical Physics, vol. 33, pp. 559–569, Dec. 1983.
  23. M. Perreau, “Ising model in planar lacunary and fractal lattices: A path counting approach,” Phys. Rev. B, vol. 96, p. 174407, Nov. 2017.
  24. J. Genzor, “Calculation of critical exponents on fractal lattice Ising model by higher-order tensor renormalization group method,” Phys. Rev. E, vol. 107, p. 034131, Mar. 2023.
  25. S. Boettcher, B. Gonçalves, and H. Guclu, “Hierarchical regular small-world networks,” Journal of Physics A: Mathematical and Theoretical, vol. 41, p. 252001, may 2008.
  26. M. J. de Oliveira and S. R. Salinas, “Potts glass on the Bethe lattice,” Phys. Rev. B, vol. 35, pp. 8744–8746, June 1987.
  27. Z. Borjan, M. Knežević, and S. Milošević, “Potts-model formulation of percolation and branched polymers on a fractal lattice,” Phys. Rev. B, vol. 47, pp. 144–149, Jan. 1993.
  28. F. S. de Menezes and A. C. N. de Magalhães, “Potts model on infinitely ramified Sierpinski-gasket-type fractals and algebraic order at antiferromagnetic phases,” Phys. Rev. B, vol. 46, pp. 11642–11656, Nov. 1992.
  29. A. Chame and U. M. S. Costa, “Magnetization of a Potts ferromagnet on a Sierpinski carpet,” Journal of Physics A Mathematical General, vol. 23, pp. L1127–L1134, Nov. 1990.
  30. A. C. N. de Magalhães, S. R. Salinas, and C. Tsallis, “LETTER TO THE EDITOR: Aperiodic interactions on hierarchical lattices: an exact criterion for the Potts ferromagnet criticality,” Journal of Physics A Mathematical General, vol. 31, pp. L567–L573, Aug. 1998.
  31. P. T. Muzy and S. R. Salinas, “Ferromagnetic Potts Model on a Hierarchical Lattice with Random Layered Interactions,” International Journal of Modern Physics B, vol. 13, pp. 397–409, Jan. 1999.
  32. P. T. Muzy, A. P. Vieira, and S. R. Salinas, “Correlated disordered interactions on Potts models,” Phys. Rev. E, vol. 65, p. 046120, Apr. 2002.
  33. P. M. Bleher and M. Y. Lyubich, “Julia sets and complex singularities in hierarchical Ising models,” Communications in Mathematical Physics, vol. 141, pp. 453–474, Nov. 1991.
  34. Westview Press, 2000.
  35. Dynamical Systems in Cosmology. Cambridge University Press, 1997.
  36. F. Canfora, L. Parisi, and G. Vilasi, “Regge theory and statistical mechanics,” Phys. Lett. B, vol. 638, pp. 85–88, 2006.
  37. F. Canfora, “Kallen-Lehman approach to 3D Ising model,” Phys. Lett. B, vol. 646, pp. 54–61, 2007.
  38. M. Astorino, F. Canfora, C. Martinez, and L. Parisi, “Minimal duality breaking in the Kallen-Lehman approach to 3D Ising model: A Numerical test,” Phys. Lett. B, vol. 664, pp. 139–144, 2008.
  39. M. Astorino, F. Canfora, and G. Giribet, “Fisher zeros in the Kallen-Lehman approach to 3D Ising model,” Phys. Lett. B, vol. 671, pp. 291–297, 2009.
  40. M. Astorino and F. Canfora, “Duality and Fisher zeros in the 2D Potts model on square lattice,” Phys. Rev. E, vol. 81, p. 051140, 2010.
  41. P. D. Alvarez, F. Canfora, S. A. Reyes, and S. Riquelme, “Potts model on recursive lattices: some new exact results,” Eur. Phys. J. B, vol. 85, p. 99, 2012.
  42. N. Biggs, R. Damerell, and D. Sands, “Recursive families of graphs,” Journal of Combinatorial Theory, Series B, vol. 12, no. 2, pp. 123–131, 1972.
  43. S. Beraha and J. Kahane, “Is the four-color conjecture almost false?,” Journal of Combinatorial Theory, Series B, vol. 27, no. 1, pp. 1–12, 1979.
  44. S. Beraha, J. Kahane, and N. Weiss, “Limits of chromatic zeros of some families of maps,” Journal of Combinatorial Theory, Series B, vol. 28, no. 1, pp. 52–65, 1980.
  45. L. Kauffman, “An invariant of regular isotopy,” Transactions of the American Mathematical Society, vol. 318, 02 1990.
  46. 1991.
  47. F. Y. Wu, “Knot theory and statistical mechanics,” Rev. Mod. Phys., vol. 64, pp. 1099–1131, Oct 1992.
  48. C. Fortuin and P. Kasteleyn, “On the random-cluster model: I. introduction and relation to other models,” Physica, vol. 57, no. 4, pp. 536–564, 1972.
  49. F. Wagner, D. Grensing, and J. Heide, “New order parameters in the Potts model on a Cayley tree,” Journal of Physics A Mathematical General, vol. 34, pp. 11261–11272, Dec. 2001.
  50. A. Donno and D. Iacono, “The Tutte polynomial of the Sierpinski and Hanoi graphs,” arXiv e-prints, p. arXiv:1006.5333, June 2010.
  51. N. Pecora and F. Tramontana, “Maps with vanishing denominator and their applications,” Frontiers in Applied Mathematics and Statistics, vol. 2, 2016.
  52. J. DeSimoi and S. Marmi, “Potts models on hierarchical lattices and renormalization group dynamics,” Journal of Physics A Mathematical General, vol. 42, p. 095001, Mar. 2009.
  53. J. DeSimoi, “Potts models on hierarchical lattices and renormalization group dynamics: II. Examples and numerical results,” Journal of Physics A Mathematical General, vol. 42, p. 095002, Mar. 2009.
  54. S.-C. Chang, R. K. W. Roeder, and R. Shrock, “q-plane zeros of the Potts partition function on diamond hierarchical graphs,” Journal of Mathematical Physics, vol. 61, 07 2020. 073301.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets