Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Challenges and Perspectives of Foundation Models for Medical Image Analysis (2306.05705v2)

Published 9 Jun 2023 in eess.IV and cs.CV

Abstract: This article discusses the opportunities, applications and future directions of large-scale pre-trained models, i.e., foundation models, for analyzing medical images. Medical foundation models have immense potential in solving a wide range of downstream tasks, as they can help to accelerate the development of accurate and robust models, reduce the large amounts of required labeled data, preserve the privacy and confidentiality of patient data. Specifically, we illustrate the "spectrum" of medical foundation models, ranging from general vision models, modality-specific models, to organ/task-specific models, highlighting their challenges, opportunities and applications. We also discuss how foundation models can be leveraged in downstream medical tasks to enhance the accuracy and efficiency of medical image analysis, leading to more precise diagnosis and treatment decisions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shaoting Zhang (133 papers)
  2. Dimitris Metaxas (85 papers)
Citations (78)