Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Trustworthiness in Foundation Models for Medical Image Analysis (2407.15851v2)

Published 3 Jul 2024 in cs.CV, cs.AI, cs.CY, cs.HC, and cs.LG

Abstract: The rapid advancement of foundation models in medical imaging represents a significant leap toward enhancing diagnostic accuracy and personalized treatment. However, the deployment of foundation models in healthcare necessitates a rigorous examination of their trustworthiness, encompassing privacy, robustness, reliability, explainability, and fairness. The current body of survey literature on foundation models in medical imaging reveals considerable gaps, particularly in the area of trustworthiness. Additionally, existing surveys on the trustworthiness of foundation models do not adequately address their specific variations and applications within the medical imaging domain. This survey aims to fill that gap by presenting a novel taxonomy of foundation models used in medical imaging and analyzing the key motivations for ensuring their trustworthiness. We review current research on foundation models in major medical imaging applications, focusing on segmentation, medical report generation, medical question and answering (Q&A), and disease diagnosis. These areas are highlighted because they have seen a relatively mature and substantial number of foundation models compared to other applications. We focus on literature that discusses trustworthiness in medical image analysis manuscripts. We explore the complex challenges of building trustworthy foundation models for each application, summarizing current concerns and strategies for enhancing trustworthiness. Furthermore, we examine the potential of these models to revolutionize patient care. Our analysis underscores the imperative for advancing towards trustworthy AI in medical image analysis, advocating for a balanced approach that fosters innovation while ensuring ethical and equitable healthcare delivery.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (96)
  1. B. Azad, R. Azad, S. Eskandari, A. Bozorgpour, A. Kazerouni, I. Rekik, and D. Merhof, “Foundational models in medical imaging: A comprehensive survey and future vision,” arXiv preprint arXiv:2310.18689, 2023.
  2. Z. Zhao, Y. Liu, H. Wu, Y. Li, S. Wang, L. Teng, D. Liu, X. Li, Z. Cui, Q. Wang, et al., “Clip in medical imaging: A comprehensive survey,” arXiv preprint arXiv:2312.07353, 2023.
  3. Y. He, F. Huang, X. Jiang, Y. Nie, M. Wang, J. Wang, and H. Chen, “Foundation model for advancing healthcare: Challenges, opportunities, and future directions,” 2024.
  4. K. He, R. Mao, Q. Lin, Y. Ruan, X. Lan, M. Feng, and E. Cambria, “A survey of large language models for healthcare: from data, technology, and applications to accountability and ethics,” 2024.
  5. L. Sun, Y. Huang, H. Wang, S. Wu, Q. Zhang, Y. Li, C. Gao, Y. Huang, W. Lyu, Y. Zhang, X. Li, Z. Liu, Y. Liu, Y. Wang, Z. Zhang, B. Vidgen, B. Kailkhura, C. Xiong, C. Xiao, C. Li, E. Xing, F. Huang, H. Liu, H. Ji, H. Wang, H. Zhang, H. Yao, M. Kellis, M. Zitnik, M. Jiang, M. Bansal, J. Zou, J. Pei, J. Liu, J. Gao, J. Han, J. Zhao, J. Tang, J. Wang, J. Vanschoren, J. Mitchell, K. Shu, K. Xu, K.-W. Chang, L. He, L. Huang, M. Backes, N. Z. Gong, P. S. Yu, P.-Y. Chen, Q. Gu, R. Xu, R. Ying, S. Ji, S. Jana, T. Chen, T. Liu, T. Zhou, W. Wang, X. Li, X. Zhang, X. Wang, X. Xie, X. Chen, X. Wang, Y. Liu, Y. Ye, Y. Cao, Y. Chen, and Y. Zhao, “Trustllm: Trustworthiness in large language models,” 2024.
  6. Y. Liu, Y. Yao, J.-F. Ton, X. Zhang, R. Guo, H. Cheng, Y. Klochkov, M. F. Taufiq, and H. Li, “Trustworthy llms: a survey and guideline for evaluating large language models’ alignment,” 2024.
  7. Z. Salahuddin, H. C. Woodruff, A. Chatterjee, and P. Lambin, “Transparency of deep neural networks for medical image analysis: A review of interpretability methods,” 2021.
  8. N. Hasani, M. A. Morris, A. Rhamim, R. M. Summers, E. Jones, E. Siegel, and B. Saboury, “Trustworthy artificial intelligence in medical imaging,” PET Clin., vol. 17, pp. 1–12, Jan. 2022.
  9. J. Ma, Y. He, F. Li, L. Han, C. You, and B. Wang, “Segment anything in medical images,” Nature Communications, vol. 15, no. 1, p. 654, 2024.
  10. Y. Zhang, S. Hu, C. Jiang, Y. Cheng, and Y. Qi, “Segment anything model with uncertainty rectification for auto-prompting medical image segmentation,” arXiv preprint arXiv:2311.10529, 2023.
  11. O. Thawkar, A. Shaker, S. S. Mullappilly, H. Cholakkal, R. M. Anwer, S. Khan, J. Laaksonen, and F. S. Khan, “Xraygpt: Chest radiographs summarization using medical vision-language models,” 2023.
  12. Z. Chen, M. Varma, J.-B. Delbrouck, M. Paschali, L. Blankemeier, D. Van Veen, J. M. J. Valanarasu, A. Youssef, J. P. Cohen, E. P. Reis, et al., “Chexagent: Towards a foundation model for chest x-ray interpretation,” arXiv preprint arXiv:2401.12208, 2024.
  13. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
  14. W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing, “Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,” March 2023.
  15. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” 2020.
  16. OpenAI, “Gpt-4 technical report,” 2024.
  17. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning, pp. 8748–8763, PMLR, 2021.
  18. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” 2021.
  19. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” 2021.
  20. M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging properties in self-supervised vision transformers,” 2021.
  21. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” 2020.
  22. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” 2021.
  23. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” 2022.
  24. A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye, Y. Yang, S. Gupta, B. P. Majumder, K. Hermann, S. Welleck, A. Yazdanbakhsh, and P. Clark, “Self-refine: Iterative refinement with self-feedback,” 2023.
  25. P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.
  26. M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim, “Visual prompt tuning,” 2022.
  27. Y. Huang, X. Yang, L. Liu, H. Zhou, A. Chang, X. Zhou, R. Chen, J. Yu, J. Chen, C. Chen, et al., “Segment anything model for medical images?,” Medical Image Analysis, vol. 92, p. 103061, 2024.
  28. H. Brown, K. Lee, F. Mireshghallah, R. Shokri, and F. Tramèr, “What does it mean for a language model to preserve privacy?,” 2022.
  29. M. Adnan, S. Kalra, J. C. Cresswell, G. W. Taylor, and H. R. Tizhoosh, “Federated learning and differential privacy for medical image analysis,” Scientific reports, vol. 12, no. 1, p. 1953, 2022.
  30. M. Wornow, Y. Xu, R. Thapa, B. Patel, E. Steinberg, S. Fleming, M. A. Pfeffer, J. Fries, and N. H. Shah, “The shaky foundations of large language models and foundation models for electronic health records,” npj Digital Medicine, vol. 6, no. 1, p. 135, 2023.
  31. R. Jin, C.-Y. Huang, C. You, and X. Li, “Backdoor attack on unpaired medical image-text foundation models: A pilot study on medclip,” 2024.
  32. B. Wang, W. Chen, H. Pei, C. Xie, M. Kang, C. Zhang, C. Xu, Z. Xiong, R. Dutta, R. Schaeffer, et al., “Decodingtrust: A comprehensive assessment of trustworthiness in gpt models,” arXiv preprint arXiv:2306.11698, 2023.
  33. Z. Zhao, S. Wang, J. Gu, Y. Zhu, L. Mei, Z. Zhuang, Z. Cui, Q. Wang, and D. Shen, “Chatcad+: Towards a universal and reliable interactive cad using llms,” arXiv preprint arXiv:2305.15964, 2023.
  34. M. A. Ahmad, I. Yaramis, and T. D. Roy, “Creating trustworthy llms: Dealing with hallucinations in healthcare ai,” arXiv preprint arXiv:2311.01463, 2023.
  35. H. Nori, N. King, S. M. McKinney, D. Carignan, and E. Horvitz, “Capabilities of gpt-4 on medical challenge problems,” 2023.
  36. H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin, and M. Du, “Explainability for large language models: A survey,” ACM Transactions on Intelligent Systems and Technology, vol. 15, no. 2, pp. 1–38, 2024.
  37. H. Luo and L. Specia, “From understanding to utilization: A survey on explainability for large language models,” arXiv preprint arXiv:2401.12874, 2024.
  38. M. A. Ricci Lara, R. Echeveste, and E. Ferrante, “Addressing fairness in artificial intelligence for medical imaging,” nature communications, vol. 13, no. 1, p. 4581, 2022.
  39. Z. Xu, J. Li, Q. Yao, H. Li, and S. K. Zhou, “Fairness in medical image analysis and healthcare: A literature survey,” Authorea Preprints, 2023.
  40. Y. Liu, G. Luo, and Y. Zhu, “Fedfms: Exploring federated foundation models for medical image segmentation,” 2024.
  41. A. Wang, M. Islam, M. Xu, Y. Zhang, and H. Ren, “Sam meets robotic surgery: An empirical study in robustness perspective,” 2023.
  42. H. E. Wong, M. Rakic, J. Guttag, and A. V. Dalca, “Scribbleprompt: Fast and flexible interactive segmentation for any medical image,” arXiv preprint arXiv:2312.07381, 2023.
  43. S. Roy, T. Wald, G. Koehler, M. R. Rokuss, N. Disch, J. Holzschuh, D. Zimmerer, and K. H. Maier-Hein, “Sam. md: Zero-shot medical image segmentation capabilities of the segment anything model,” arXiv preprint arXiv:2304.05396, 2023.
  44. J. Stein, M. Di Folco, and J. A. Schnabel, “Influence of prompting strategies on segment anything model (sam) for short-axis cardiac mri segmentation,” arXiv preprint arXiv:2312.08932, 2023.
  45. M. Jiang, J. Zhou, J. Wu, T. Wang, Y. Jin, and M. Xu, “Uncertainty-aware adapter: Adapting segment anything model (sam) for ambiguous medical image segmentation,” 2024.
  46. W. Lei, X. Wei, X. Zhang, K. Li, and S. Zhang, “Medlsam: Localize and segment anything model for 3d medical images,” arXiv preprint arXiv:2306.14752, 2023.
  47. T. Zhong, W. Zhao, Y. Zhang, Y. Pan, P. Dong, Z. Jiang, X. Kui, Y. Shang, L. Yang, Y. Wei, L. Yang, H. Chen, H. Zhao, Y. Liu, N. Zhu, Y. Li, Y. Wang, J. Yao, J. Wang, Y. Zeng, L. He, C. Zheng, Z. Zhang, M. Li, Z. Liu, H. Dai, Z. Wu, L. Zhang, S. Zhang, X. Cai, X. Hu, S. Zhao, X. Jiang, X. Zhang, X. Li, D. Zhu, L. Guo, D. Shen, J. Han, T. Liu, J. Liu, and T. Zhang, “Chatradio-valuer: A chat large language model for generalizable radiology report generation based on multi-institution and multi-system data,” 2023.
  48. Q. Chen, Y. Xie, B. Wu, M.-S. To, J. Ang, and Q. Wu, “S4m: Generating radiology reports by a single model for multiple body parts,” 2023.
  49. Z. Zhang, B. Wang, W. Liang, Y. Li, X. Guo, G. Wang, S. Li, and G. Wang, “Sam-guided enhanced fine-grained encoding with mixed semantic learning for medical image captioning,” 2023.
  50. B. Yang, A. Raza, Y. Zou, and T. Zhang, “Customizing general-purpose foundation models for medical report generation,” 2023.
  51. S. L. Hyland, S. Bannur, K. Bouzid, D. C. Castro, M. Ranjit, A. Schwaighofer, F. Pérez-García, V. Salvatelli, S. Srivastav, A. Thieme, N. Codella, M. P. Lungren, M. T. Wetscherek, O. Oktay, and J. Alvarez-Valle, “Maira-1: A specialised large multimodal model for radiology report generation,” 2023.
  52. R. Tanno, D. G. T. Barrett, A. Sellergren, S. Ghaisas, S. Dathathri, A. See, J. Welbl, K. Singhal, S. Azizi, T. Tu, M. Schaekermann, R. May, R. Lee, S. Man, Z. Ahmed, S. Mahdavi, Y. Matias, J. Barral, A. Eslami, D. Belgrave, V. Natarajan, S. Shetty, P. Kohli, P.-S. Huang, A. Karthikesalingam, and I. Ktena, “Consensus, dissensus and synergy between clinicians and specialist foundation models in radiology report generation,” 2023.
  53. S. Lee, W. J. Kim, J. Chang, and J. C. Ye, “Llm-cxr: Instruction-finetuned llm for cxr image understanding and generation,” 2023.
  54. V. Ramesh, N. A. Chi, and P. Rajpurkar, “Improving radiology report generation systems by removing hallucinated references to non-existent priors,” 2022.
  55. Q. Li, J. Xu, R. Yuan, M. Chen, Y. Zhang, R. Feng, X. Zhang, and S. Gao, “Enhanced knowledge injection for radiology report generation,” 2023.
  56. M. D. Danu, G. Marica, S. K. Karn, B. Georgescu, A. Mansoor, F. Ghesu, L. M. Itu, C. Suciu, S. Grbic, O. Farri, and D. Comaniciu, “Generation of radiology findings in chest x-ray by leveraging collaborative knowledge,” 2023.
  57. W. Chen, L. Shen, J. Lin, J. Luo, X. Li, and Y. Yuan, “Fine-grained image-text alignment in medical imaging enables explainable cyclic image-report generation,” 2024.
  58. T. Tanida, P. Müller, G. Kaissis, and D. Rueckert, “Interactive and explainable region-guided radiology report generation,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, June 2023.
  59. X. Zhang, C. Wu, Z. Zhao, W. Lin, Y. Zhang, Y. Wang, and W. Xie, “Pmc-vqa: Visual instruction tuning for medical visual question answering,” 2023.
  60. T. van Sonsbeek, M. M. Derakhshani, I. Najdenkoska, C. G. M. Snoek, and M. Worring, “Open-ended medical visual question answering through prefix tuning of language models,” 2023.
  61. K. Kim, Y. Oh, S. Park, H. K. Byun, J. S. Kim, Y. B. Kim, and J. C. Ye, “Ro-llama: Generalist llm for radiation oncology via noise augmentation and consistency regularization,” 2023.
  62. S. Eslami, G. de Melo, and C. Meinel, “Does clip benefit visual question answering in the medical domain as much as it does in the general domain?,” 2021.
  63. S. Wang, Z. Zhao, X. Ouyang, Q. Wang, and D. Shen, “Chatcad: Interactive computer-aided diagnosis on medical image using large language models,” arXiv preprint arXiv:2302.07257, 2023.
  64. M. A. Shaaban, A. Khan, and M. Yaqub, “Medpromptx: Grounded multimodal prompting for chest x-ray diagnosis,” arXiv preprint arXiv:2403.15585, 2024.
  65. Z. Wang, Z. Wu, D. Agarwal, and J. Sun, “Medclip: Contrastive learning from unpaired medical images and text,” arXiv preprint arXiv:2210.10163, 2022.
  66. J. Liu, T. Hu, Y. Zhang, X. Gai, Y. Feng, and Z. Liu, “A chatgpt aided explainable framework for zero-shot medical image diagnosis,” arXiv preprint arXiv:2307.01981, 2023.
  67. C. Wu, J. Lei, Q. Zheng, W. Zhao, W. Lin, X. Zhang, X. Zhou, Z. Zhao, Y. Zhang, Y. Wang, et al., “Can gpt-4v (ision) serve medical applications? case studies on gpt-4v for multimodal medical diagnosis,” arXiv preprint arXiv:2310.09909, 2023.
  68. Y. Yang, Y. Liu, X. Liu, A. Gulhane, D. Mastrodicasa, W. Wu, E. J. Wang, D. W. Sahani, and S. Patel, “Demographic bias of expert-level vision-language foundation models in medical imaging,” arXiv preprint arXiv:2402.14815, 2024.
  69. Y. Luo, M. Shi, M. O. Khan, M. M. Afzal, H. Huang, S. Yuan, Y. Tian, L. Song, A. Kouhana, T. Elze, et al., “Fairclip: Harnessing fairness in vision-language learning,” arXiv preprint arXiv:2403.19949, 2024.
  70. L. Berrada, S. De, J. H. Shen, J. Hayes, R. Stanforth, D. Stutz, P. Kohli, S. L. Smith, and B. Balle, “Unlocking accuracy and fairness in differentially private image classification,” arXiv preprint arXiv:2308.10888, 2023.
  71. Y. Bie, L. Luo, Z. Chen, and H. Chen, “Xcoop: Explainable prompt learning for computer-aided diagnosis via concept-guided context optimization,” arXiv preprint arXiv:2403.09410, 2024.
  72. S. Agarwal, Y. R. Semenov, and W. Lotter, “Representing visual classification as a linear combination of words,” arXiv preprint arXiv:2311.10933, 2023.
  73. S. Doerrich, T. Archut, F. Di Salvo, and C. Ledig, “Integrating knn with foundation models for adaptable and privacy-aware image classification,” arXiv preprint arXiv:2402.12500, 2024.
  74. A. Yan, Y. Wang, Y. Zhong, Z. He, P. Karypis, Z. Wang, C. Dong, A. Gentili, C.-N. Hsu, J. Shang, et al., “Robust and interpretable medical image classifiers via concept bottleneck models,” arXiv preprint arXiv:2310.03182, 2023.
  75. H. Wei, B. Liu, M. Zhang, P. Shi, and W. Yuan, “Visionclip: An med-aigc based ethical language-image foundation model for generalizable retina image analysis,” arXiv preprint arXiv:2403.10823, 2024.
  76. B. Wang, A. Aboah, Z. Zhang, and U. Bagci, “Gazesam: What you see is what you segment,” arXiv preprint arXiv:2304.13844, 2023.
  77. Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for privacy-preserving ai,” Communications of the ACM, vol. 63, no. 12, pp. 33–36, 2020.
  78. M. Allan, A. Shvets, T. Kurmann, Z. Zhang, R. Duggal, Y.-H. Su, N. Rieke, I. Laina, N. Kalavakonda, S. Bodenstedt, et al., “2017 robotic instrument segmentation challenge,” arXiv preprint arXiv:1902.06426, 2019.
  79. T. Zhao, Y. Gu, J. Yang, N. Usuyama, H. H. Lee, T. Naumann, J. Gao, A. Crabtree, B. Piening, C. Bifulco, et al., “Biomedparse: a biomedical foundation model for image parsing of everything everywhere all at once,” arXiv preprint arXiv:2405.12971, 2024.
  80. N. Jain, P. yeh Chiang, Y. Wen, J. Kirchenbauer, H.-M. Chu, G. Somepalli, B. R. Bartoldson, B. Kailkhura, A. Schwarzschild, A. Saha, M. Goldblum, J. Geiping, and T. Goldstein, “Neftune: Noisy embeddings improve instruction finetuning,” 2023.
  81. W. Wang, Z. Zhao, and T. Sun, “Gpt-doctor: Customizing large language models for medical consultation,” 2023.
  82. J. Chen, D. Yang, T. Wu, Y. Jiang, X. Hou, M. Li, S. Wang, D. Xiao, K. Li, and L. Zhang, “Detecting and evaluating medical hallucinations in large vision language models,” arXiv preprint arXiv:2406.10185, 2024.
  83. A. Rohrbach, L. A. Hendricks, K. Burns, T. Darrell, and K. Saenko, “Object hallucination in image captioning,” arXiv preprint arXiv:1809.02156, 2018.
  84. P. Xia, Z. Chen, J. Tian, Y. Gong, R. Hou, Y. Xu, Z. Wu, Z. Fan, Y. Zhou, K. Zhu, et al., “Cares: A comprehensive benchmark of trustworthiness in medical vision language models,” arXiv preprint arXiv:2406.06007, 2024.
  85. Q. Yan, X. He, X. Yue, and X. E. Wang, “Worse than random? an embarrassingly simple probing evaluation of large multimodal models in medical vqa,” arXiv preprint arXiv:2405.20421, 2024.
  86. Y. Liu, Y. Yao, J.-F. Ton, X. Zhang, R. G. H. Cheng, Y. Klochkov, M. F. Taufiq, and H. Li, “Trustworthy llms: a survey and guideline for evaluating large language models’ alignment,” arXiv preprint arXiv:2308.05374, 2023.
  87. B. Liu, L.-M. Zhan, L. Xu, L. Ma, Y. Yang, and X.-M. Wu, “Slake: A semantically-labeled knowledge-enhanced dataset for medical visual question answering,” 2021.
  88. S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early experiments with gpt-4,” 2023.
  89. Z. Yu, Y. Liu, and Q. Chen, “Progressive trajectory matching for medical dataset distillation,” arXiv preprint arXiv:2403.13469, 2024.
  90. M. Goddard, “The eu general data protection regulation (gdpr): European regulation that has a global impact,” International Journal of Market Research, vol. 59, no. 6, pp. 703–705, 2017.
  91. J. P. Veerla, P. Thota, P. S. Guttikonda, S. Nilizadeh, and J. M. Luber, “Vulnerabilities unveiled: Adversarially attacking a multimodal vision language model for pathology imaging,” arXiv preprint arXiv:2401.02565, 2024.
  92. T. Han, S. Nebelung, F. Khader, T. Wang, G. Mueller-Franzes, C. Kuhl, S. Försch, J. Kleesiek, C. Haarburger, K. K. Bressem, et al., “Medical foundation models are susceptible to targeted misinformation attacks,” arXiv preprint arXiv:2309.17007, 2023.
  93. S. Menon and C. Vondrick, “Visual classification via description from large language models,” arXiv preprint arXiv:2210.07183, 2022.
  94. R. Jin, W. Deng, M. Chen, and X. Li, “Universal debiased editing on foundation models for fair medical image classification,” 2024.
  95. S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak, D. Lindner, P. Freire, et al., “Open problems and fundamental limitations of reinforcement learning from human feedback,” arXiv preprint arXiv:2307.15217, 2023.
  96. T. Kaufmann, P. Weng, V. Bengs, and E. Hüllermeier, “A survey of reinforcement learning from human feedback,” arXiv preprint arXiv:2312.14925, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Congzhen Shi (1 paper)
  2. Ryan Rezai (2 papers)
  3. Jiaxi yang (31 papers)
  4. Qi Dou (163 papers)
  5. Xiaoxiao Li (144 papers)
Citations (2)