The Qupit Stabiliser ZX-travaganza: Simplified Axioms, Normal Forms and Graph-Theoretic Simplification (2306.05204v2)
Abstract: We present a smorgasbord of results on the stabiliser ZX-calculus for odd prime-dimensional qudits (i.e. qupits). We derive a simplified rule set that closely resembles the original rules of qubit ZX-calculus. Using these rules, we demonstrate analogues of the spider-removing local complementation and pivoting rules. This allows for efficient reduction of diagrams to the affine with phases normal form. We also demonstrate a reduction to a unique form, providing an alternative and simpler proof of completeness. Furthermore, we introduce a different reduction to the graph state with local Cliffords normal form, which leads to a novel layered decomposition for qupit Clifford unitaries. Additionally, we propose a new approach to handle scalars formally, closely reflecting their practical usage. Finally, we have implemented many of these findings in DiZX, a new open-source Python library for qudit ZX-diagrammatic reasoning.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.