Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Chi-square approximation for the distribution of individual eigenvalues of a singular Wishart matrix (2306.05160v1)

Published 8 Jun 2023 in math.ST and stat.TH

Abstract: This paper discusses the approximate distributions of eigenvalues of a singular Wishart matrix. We give the approximate joint density of eigenvalues by Laplace approximation for the hyper-geometric functions of matrix arguments. Furthermore, we show that the distribution of each eigenvalue can be approximated by the chi-square distribution with varying degrees of freedom when the population eigenvalues are infinitely dispersed. The derived result is applied to testing the equality of eigenvalues in two populations

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube