Chi-square approximation for the distribution of individual eigenvalues of a singular Wishart matrix (2306.05160v1)
Abstract: This paper discusses the approximate distributions of eigenvalues of a singular Wishart matrix. We give the approximate joint density of eigenvalues by Laplace approximation for the hyper-geometric functions of matrix arguments. Furthermore, we show that the distribution of each eigenvalue can be approximated by the chi-square distribution with varying degrees of freedom when the population eigenvalues are infinitely dispersed. The derived result is applied to testing the equality of eigenvalues in two populations
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.