Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Octree-based hierarchical sampling optimization for the volumetric super-resolution of scientific data (2306.05133v1)

Published 8 Jun 2023 in physics.comp-ph and cs.CE

Abstract: When introducing physics-constrained deep learning solutions to the volumetric super-resolution of scientific data, the training is challenging to converge and always time-consuming. We propose a new hierarchical sampling method based on octree to solve these difficulties. In our approach, scientific data is preprocessed before training, and a hierarchical octree-based data structure is built to guide sampling on the latent context grid. Each leaf node in the octree corresponds to an indivisible subblock of the volumetric data. The dimensions of the subblocks are different, making the number of sample points in each randomly cropped training data block to be adaptive. We reconstruct the octree at intervals according to loss distribution to perform the multi-stage training. With the Rayleigh-B\'enard convection problem, we deploy our method to state-of-the-art models. We constructed adequate experiments to evaluate the training performance and model accuracy of our method. Experiments indicate that our sampling optimization improves the convergence performance of physics-constrained deep learning super-resolution solutions. Furthermore, the sample points and training time are significantly reduced with no drop in model accuracy. We also test our method in training tasks of other deep neural networks, and the results show our sampling optimization has extensive effectiveness and applicability. The code is publicly available at https://github.com/xinjiewang/octree-based_sampling.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube