Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Probing Dynamical Sensitivity of a Non-KAM System Through Out-of-Time-Order Correlators (2306.04209v3)

Published 7 Jun 2023 in nlin.CD and quant-ph

Abstract: Non-KAM (Kolmogorov-Arnold-Moser) systems, when perturbed by weak time-dependent fields, offer a fast route to classical chaos through an abrupt breaking of invariant phase space tori. In this work, we employ out-of-time-order correlators (OTOCs) to study the dynamical sensitivity of a perturbed non-KAM system in the quantum limit as the parameter that characterizes the $\textit{resonance}$ condition is slowly varied. For this purpose, we consider a quantized kicked harmonic oscillator (KHO) model, which displays stochastic webs resembling Arnold's diffusion that facilitate large-scale diffusion in the phase space. Although the Lyapunov exponent of the KHO at resonances remains close to zero in the weak perturbative regime, making the system weakly chaotic in the conventional sense, the classical phase space undergoes significant structural changes. Motivated by this, we study the OTOCs when the system is in resonance and contrast the results with the non-resonant case. At resonances, we observe that the long-time dynamics of the OTOCs are sensitive to these structural changes, where they grow quadratically as opposed to linear or stagnant growth at non-resonances. On the other hand, our findings suggest that the short-time dynamics remain relatively more stable and show the exponential growth found in the literature for unstable fixed points. The numerical results are backed by analytical expressions derived for a few special cases. We will then extend our findings concerning the non-resonant cases to a broad class of near-integrable KAM systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.