Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Extremely Large-scale Array Systems: Near-Field Codebook Design and Performance Analysis (2306.01458v2)

Published 2 Jun 2023 in cs.IT, cs.SY, eess.SP, eess.SY, and math.IT

Abstract: Extremely Large-scale Array (ELAA) promises to deliver ultra-high data rates with increased antenna elements. However, increasing antenna elements leads to a wider realm of near-field, which challenges the traditional design of codebooks. In this paper, we propose novel near-field codebook schemes based on the fitting formula of codewords' quantization performance. First, we analyze the quantization performance properties of uniform linear array (ULA) and uniform planar array (UPA) codewords. Our findings reveal an intriguing property: the correlation formula for ULA codewords can be represented by the elliptic formula, while the correlation formula for UPA codewords can be approximated using the ellipsoid formula. Building on this insight, we propose a ULA uniform codebook that maximizes the minimum correlation based on the derived formula. Moreover, we introduce a ULA dislocation codebook to further reduce quantization overhead. Continuing our exploration, we propose UPA uniform and dislocation codebook schemes. Our investigation demonstrates that oversampling in the angular domain offers distinct advantages, achieving heightened accuracy while minimizing overhead in quantifying near-field channels. Numerical results demonstrate the appealing advantages of the proposed codebook over existing methods in decreasing quantization overhead and increasing quantization accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube