Proof-of-work consensus by quantum sampling (2305.19865v3)
Abstract: Since its advent in 2011, boson sampling has been a preferred candidate for demonstrating quantum advantage because of its simplicity and near-term requirements compared to other quantum algorithms. We propose to use a variant, called coarse-grained boson-sampling (CGBS), as a quantum Proof-of-Work (PoW) scheme for blockchain consensus. The users perform boson sampling using input states that depend on the current block information and commit their samples to the network. Afterwards, CGBS strategies are determined which can be used to both validate samples and reward successful miners. By combining rewards for miners committing honest samples together with penalties for miners committing dishonest samples, a Nash equilibrium is found that incentivizes honest nodes. We provide numerical evidence that these validation tests are hard to spoof classically without knowing the binning scheme ahead of time and show the robustness of our protocol to small partial distinguishability of photons. The scheme works for both Fock state boson sampling and Gaussian boson sampling and provides dramatic speedup and energy savings relative to computation by classical hardware.
- C. Dwork and M. Naor, Pricing via processing or combatting junk mail, in Advances in Cryptology — CRYPTO’ 92, edited by E. F. Brickell (Springer Berlin Heidelberg, Berlin, Heidelberg, 1993) pp. 139–147.
- O. Sattath, On the insecurity of quantum bitcoin mining, International Journal of Information Security 19, 291 (2020).
- T. Lee, M. Ray, and M. Santha, Strategies for quantum races, in Information Technology Convergence and Services (2018).
- S. Park and N. Spooner, The superlinearity problem in post-quantum blockchains, Cryptology ePrint Archive, Paper 2022/1423 (2022), https://eprint.iacr.org/2022/1423.
- G. M. Nikolopoulos and T. Brougham, Decision and function problems based on boson sampling, Phys. Rev. A 94, 012315 (2016).
- G. M. Nikolopoulos, Cryptographic one-way function based on boson sampling, Quantum Information Processing 18, 10.1007/s11128-019-2372-9 (2019).
- J. Dubrovsky, L. Kiffer, and B. Penkovsky, Towards optical proof of work, Cryptoecon. Syst. 11 (2020).
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- S. Arora and B. Barak, Computational Complexity: A Modern Approach (Cambridge University Press, 2009).
- F. Nielsen, Generalized bhattacharyya and chernoff upper bounds on bayes error using quasi-arithmetic means, Pattern Recognition Letters 42, 25 (2014).
- G. Valiant and P. Valiant, An automatic inequality prover and instance optimal identity testing, SIAM Journal on Computing 46, 429 (2017), https://doi.org/10.1137/151002526 .
- A. Arkhipov, Bosonsampling is robust against small errors in the network matrix, Phys. Rev. A 92, 062326 (2015).
- B. D. Bernheim and M. D. Whinston, Microeconomics, 2nd ed. (McGraw-Hill/Irwin, 2014).
- A. Arkhipov and G. Kuperberg, The bosonic birthday paradox, Geom. Topol. Monogr. 120, 1 (2012).
- L. You, Superconducting nanowire single-photon detectors for quantum information, Nanophotonics 9, 2673 (2020).
- P. Clifford and R. Clifford, The classical complexity of boson sampling, in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18 (Society for Industrial and Applied Mathematics, USA, 2018) p. 146–155.
- P. Clifford and R. Clifford, Faster classical boson sampling, arXiv preprint arXiv:2005.04214 (2020).
- P. Lundow and K. Markström, Efficient computation of permanents, with applications to boson sampling and random matrices, Journal of Computational Physics 455, 110990 (2022).
- A. E. Moylett and P. S. Turner, Quantum simulation of partially distinguishable boson sampling, Phys. Rev. A 97, 062329 (2018).
- A. Baldominos and Y. Saez, Coin.ai: A proof-of-useful-work scheme for blockchain-based distributed deep learning, Entropy 21, 10.3390/e21080723 (2019).
- S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, http://bitcoin.org/bitcoin.pdf (2008).
- V. V. Kocharovsky, V. V. Kocharovsky, and S. V. Tarasov, The hafnian master theorem, Linear Algebra and its Applications 651, 144 (2022).
- Gurvits and Samorodnitsky, A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary, Discrete & Computational Geometry 27, 531 (2002).
- S. Aaronson and T. Hance, Generalizing and derandomizing gurvits’s approximation algorithm for the permanent, CoRR abs/1212.0025 (2012), 1212.0025 .
- S. Tadelis, Game Theory: An Introduction, 1st ed. (Princeton University Press, 2012).
- H. Markowitz, Portfolio selection, The Journal of Finance 7, 77 (1952).
- R. E. Bailey, The Economics of Financial Markets (Cambridge University Press, 2005).
- I. Eyal and E. G. Sirer, Majority is not enough: Bitcoin mining is vulnerable, CoRR abs/1311.0243 (2013), 1311.0243 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.