Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Verifying the Smoothness of Graph Signals: A Graph Signal Processing Approach (2305.19618v3)

Published 31 May 2023 in eess.SP

Abstract: Graph signal processing (GSP) deals with the representation, analysis, and processing of structured data, i.e. graph signals that are defined on the vertex set of a generic graph. A crucial prerequisite for applying various GSP and graph neural network (GNN) approaches is that the examined signals are smooth graph signals with respect to the underlying graph, or, equivalently, have low graph total variation (TV). In this paper, we develop GSP-based approaches to verify the validity of the smoothness assumption of given signals (data) and an associated graph. The proposed approaches are based on the representation of network data as the output of a graph filter with a given graph topology. In particular, we develop two smoothness detectors for the graph-filter-output model: 1) the likelihood ratio test (LRT) for known model parameters; and 2) a semi-parametric detector that estimates the graph filter and then validates its smoothness. The properties of the proposed GSP-based detectors are investigated, and some special cases are discussed. The performance of the GSP-based detectors is evaluated using synthetic data, data from the IEEE 14-bus power system, and measurements from a network of light intensity sensors, under different setups. The results demonstrate the effectiveness of the proposed approach and its robustness to different generating models, noise levels, and number of samples.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com