Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cognitively Inspired Cross-Modal Data Generation Using Diffusion Models (2305.18433v1)

Published 28 May 2023 in cs.LG and cs.CV

Abstract: Most existing cross-modal generative methods based on diffusion models use guidance to provide control over the latent space to enable conditional generation across different modalities. Such methods focus on providing guidance through separately-trained models, each for one modality. As a result, these methods suffer from cross-modal information loss and are limited to unidirectional conditional generation. Inspired by how humans synchronously acquire multi-modal information and learn the correlation between modalities, we explore a multi-modal diffusion model training and sampling scheme that uses channel-wise image conditioning to learn cross-modality correlation during the training phase to better mimic the learning process in the brain. Our empirical results demonstrate that our approach can achieve data generation conditioned on all correlated modalities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zizhao Hu (10 papers)
  2. Mohammad Rostami (64 papers)