Equivariant embedding of finite-dimensional dynamical systems (2305.17717v4)
Abstract: We prove an equivariant version of the classical Menger-Nobeling theorem regarding topological embeddings: Whenever a group $G$ acts on a finite-dimensional compact metric space $X$, a generic continuous equivariant function from $X$ into $([0,1]r)G$ is a topological embedding, provided that for every positive integer $N$ the space of points in $X$ with orbit size at most $N$ has topological dimension strictly less than $\frac{rN}{2}$. We emphasize that the result imposes no restrictions whatsoever on the acting group $G$ (beyond the existence of an action on a finite-dimensional space). Moreover, if $G$ is finitely generated then there exists a finite subset $F\subset G$ so that for a generic continuous map $h:X\to [0,1]{r}$, the map $h{F}:X\to ([0,1]{r}){F}$ given by $x\mapsto (f(gx))_{g\in F}$ is an embedding. This constitutes a generalization of the Takens delay embedding theorem into the topological category.
- V. I. Arnol′ d. On functions of three variables. Dokl. Akad. Nauk SSSR, pages 679–681, 1957.
- A Hurewicz theorem for the Assouad-Nagata dimension. J. Lond. Math. Soc. (2), 77(3):741–756, 2008.
- A probabilistic Takens theorem. Nonlinarity, 33(9):4940–4966, 2020.
- On the Schroer–Sauer–Ott–Yorke predictability conjecture for time-delay embeddings. Communications in Mathematical Physics, 391(2):609–641, 2022.
- Prediction of dynamical systems from time-delayed measurements with self-intersections. Journal de Mathématiques Pures et Appliquées, 186:103–149, 2024.
- Victoria Caballero. On an embedding theorem. Acta Math. Hungar., 88(4):269–278, 2000.
- Ryszard Engelking. Theory of dimensions, finite and infinite. Sigma Series in Pure Mathematics, 10, 1995.
- A. Flores. Über n-dimensionale Komplexe, die im ℝ2n+1superscriptℝ2𝑛1\mathbb{R}^{2n+1}blackboard_R start_POSTSUPERSCRIPT 2 italic_n + 1 end_POSTSUPERSCRIPT absolut selbstverschlungen sind. Erg. Math. Kolloqu., 6:4–7, 1935.
- The embedding problem in topological dynamics and Takens’ theorem. Nonlinearity, 31(2):597–620, 2018.
- Application of signal analysis to the embedding problem of ℤksuperscriptℤ𝑘\mathbb{Z}^{k}blackboard_Z start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT-actions. Geometric and Functional Analysis, 29(5):1440–1502, 2019.
- Misha Gromov. Topological invariants of dynamical systems and spaces of holomorphic maps. I. Math. Phys. Anal. Geom., 2(4):323–415, 1999.
- Embedding minimal dynamical systems into Hilbert cubes. Inventiones Mathematicae, 221:113–166, 2020.
- Yonatan Gutman. Mean dimension and Jaworski-type theorems. Proceedings of the London Mathematical Society, 111(4):831–850, 2015.
- Yonatan Gutman. Takens embedding theorem with a continuous observable. In Ergodic theory - Advances in dynamical systems. Walter de Gruyter GmbH & Co KG, 2016.
- Predicting chaotic time series with a partial model. Phys. Rev. E, 92:010902, Jul 2015.
- Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 435(7040):336–340, 2005.
- Dimension Theory. Princeton Mathematical Series, v. 4. Princeton University Press, Princeton, N. J., 1941.
- A. Jaworski. The Kakutani-Beboutov theorem for groups. Ph.D. dissertation. University of Maryland, 1974.
- Hisao Kato. Takens-type reconstruction theorems of one-sided dynamical systems. Nonlinearity, 36(3):1571, 2023.
- Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- A. N. Kolmogorov. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR, pages 953–956, 1957.
- Noise reduction: finding the simplest dynamical system consistent with the data. Phys. D, 41(2):183–196, 1990.
- Hanfeng Li. Sofic mean dimension. Adv. Math., 244:570–604, 2013.
- Mean dimension and an embedding problem: an example. Israel Journal of Mathematics, 199:573–584, 2014.
- Mean topological dimension. Israel Journal of Mathematics, 115:1–24, 2000.
- M Nerurkar. Observability and topological dynamics. Journal of Dynamics and Differential Equations, 3(2):273–287, 1991.
- Lyle Noakes. The Takens embedding theorem. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1(4):867–872, 1991.
- Prevalence of delay embeddings with a fixed observation function. Phys. D, 414:132697, 15, 2020.
- Phillip A. Ostrand. Dimension of metric spaces and Hilbert’s problem 13131313. Bull. Amer. Math. Soc., 71:619–622, 1965.
- Geometry from a time series. Phys. Rev. Lett., 45:712–716, Sep 1980.
- James C. Robinson. A topological delay embedding theorem for infinite-dimensional dynamical systems. Nonlinearity, 18(5):2135–2143, 2005.
- James C. Robinson. Dimensions, embeddings, and attractors, volume 186 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2011.
- Takens embedding theorems for forced and stochastic systems. In Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), volume 30, pages 5303–5314, 1997.
- Delay embeddings for forced systems. II. Stochastic forcing. J. Nonlinear Sci., 13(6):519–577, 2003.
- Distinguishing error from chaos in ecological time-series. Philosophical Transactions of the Royal Society B-Biological Sciences, 330(1257):235–251, 1990.
- Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, 1990.
- Jaroslav Stark. Delay embeddings for forced systems. I. Deterministic forcing. J. Nonlinear Sci., 9(3):255–332, 1999.
- Embedology. J. Statist. Phys., 65(3-4):579–616, 1991.
- Floris Takens. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980, volume 898 of Lecture Notes in Math., pages 366–381. Springer, Berlin-New York, 1981.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.