Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Irreducibility of Recombination Markov Chains in the Triangular Lattice (2305.17239v2)

Published 26 May 2023 in cs.DM, cs.CG, cs.DS, and math.CO

Abstract: In the United States, regions are frequently divided into districts for the purpose of electing representatives. How the districts are drawn can affect who's elected, and drawing districts to give an advantage to a certain group is known as gerrymandering. It can be surprisingly difficult to detect gerrymandering, but one algorithmic method is to compare a current districting plan to a large number of randomly sampled plans to see whether it is an outlier. Recombination Markov chains are often used for this random sampling: randomly choose two districts, consider their union, and split this union in a new way. This works well in practice, but the theory behind it remains underdeveloped. For example, it's not known if recombination Markov chains are irreducible, that is, if recombination moves suffice to move from any districting plan to any other. Irreducibility of recombination Markov chains can be formulated as a graph problem: for a graph $G$, is the space of all partitions of $G$ into $k$ connected subgraphs ($k$ districts) connected by recombination moves? We consider three simply connected districts and district sizes $k_1\pm 1$ vertices, $k_2\pm 1$ vertices, and $k3\pm 1$ vertices. We prove for arbitrarily large triangular regions in the triangular lattice, recombination Markov chains are irreducible. This is the first proof of irreducibility under tight district size constraints for recombination Markov chains beyond small or trivial examples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.