Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recombination: A family of Markov chains for redistricting (1911.05725v1)

Published 31 Oct 2019 in cs.CY and physics.soc-ph

Abstract: Redistricting is the problem of partitioning a set of geographical units into a fixed number of districts, subject to a list of often-vague rules and priorities. In recent years, the use of randomized methods to sample from the vast space of districting plans has been gaining traction in courts of law for identifying partisan gerrymanders, and it is now emerging as a possible analytical tool for legislatures and independent commissions. In this paper, we set up redistricting as a graph partition problem and introduce a new family of Markov chains called Recombination (or ReCom) on the space of graph partitions. The main point of comparison will be the commonly used Flip walk, which randomly changes the assignment label of a single node at a time. We present evidence that ReCom mixes efficiently, especially in contrast to the slow-mixing Flip, and provide experiments that demonstrate its qualitative behavior. We demonstrate the advantages of ReCom on real-world data and explain both the challenges of the Markov chain approach and the analytical tools that it enables. We close with a short case study involving the Virginia House of Delegates.

Citations (139)

Summary

We haven't generated a summary for this paper yet.