Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs) (2305.17033v7)

Published 26 May 2023 in eess.IV, cs.CV, cs.LG, and q-bio.QM

Abstract: Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A. Mackay, A. Burford, D. Carvalho, E. Izquierdo, J. Fazal-Salom, K. R. Taylor, L. Bjerke, M. Clarke, M. Vinci, M. Nandhabalan, et al., “Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma,” Cancer cell, vol. 32, no. 4, pp. 520–537, 2017.
  2. M. H. Jansen, S. E. Veldhuijzen van Zanten, E. Sanchez Aliaga, M. W. Heymans, M. Warmuth-Metz, D. Hargrave, E. J. Van Der Hoeven, C. E. Gidding, E. S. de Bont, O. S. Eshghi, et al., “Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria,” Neuro-oncology, vol. 17, no. 1, pp. 160–166, 2015.
  3. A. Fathi Kazerooni, S. Arif, R. Madhogarhia, N. Khalili, D. Haldar, S. Bagheri, A. M. Familiar, H. Anderson, S. Haldar, W. Tu, et al., “Automated tumor segmentation and brain tissue extraction from multiparametric mri of pediatric brain tumors: A multi-institutional study,” Neuro-Oncology Advances, p. vdad027, 2023.
  4. R. Madhogarhia, D. Haldar, S. Bagheri, A. Familiar, H. Anderson, S. Arif, A. Vossough, P. Storm, A. Resnick, C. Davatzikos, et al., “Radiomics and radiogenomics in pediatric neuro-oncology: a review,” Neuro-Oncology Advances, vol. 4, no. 1, p. vdac083, 2022.
  5. A. Nabavizadeh, M. J. Barkovich, A. Mian, V. Ngo, A. F. Kazerooni, and J. E. Villanueva-Meyer, “Current state of pediatric neuro-oncology imaging, challenges and future directions,” Neoplasia, vol. 37, p. 100886, 2023.
  6. S. Bakas, K. Zeng, A. Sotiras, S. Rathore, H. Akbari, B. Gaonkar, M. Rozycki, S. Pati, and C. Davatzikos, “Glistrboost: combining multimodal mri segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: First International Workshop, Brainles 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, October 5, 2015, Revised Selected Papers 1, pp. 144–155, Springer, 2016.
  7. T. M. Cooney, K. J. Cohen, C. V. Guimaraes, G. Dhall, J. Leach, M. Massimino, A. Erbetta, L. Chiapparini, F. Malbari, K. Kramer, et al., “Response assessment in diffuse intrinsic pontine glioma: recommendations from the response assessment in pediatric neuro-oncology (rapno) working group,” The Lancet Oncology, vol. 21, no. 6, pp. e330–e336, 2020.
  8. C. Erker, B. Tamrazi, T. Y. Poussaint, S. Mueller, D. Mata-Mbemba, E. Franceschi, A. A. Brandes, A. Rao, K. B. Haworth, P. Y. Wen, et al., “Response assessment in paediatric high-grade glioma: recommendations from the response assessment in pediatric neuro-oncology (rapno) working group,” The Lancet Oncology, vol. 21, no. 6, pp. e317–e329, 2020.
  9. B. M. Ellingson, G. H. J. Kim, M. Brown, J. Lee, N. Salamon, L. Steelman, I. Hassan, S. S. Pandya, S. Chun, M. Linetsky, et al., “Volumetric measurements are preferred in the evaluation of mutant idh inhibition in non-enhancing diffuse gliomas: Evidence from a phase i trial of ivosidenib,” Neuro-oncology, vol. 24, no. 5, pp. 770–778, 2022.
  10. M. A. Lazow, M. T. Nievelstein, A. Lane, P. Bandopadhayhay, M. DeWire-Schottmiller, M. Fouladi, J. W. Glod, R. J. Greiner, L. M. Hoffman, T. R. Hummel, et al., “Volumetric endpoints in diffuse intrinsic pontine glioma: comparison to cross-sectional measures and outcome correlations in the international dipg/dmg registry,” Neuro-oncology, vol. 24, no. 9, pp. 1598–1608, 2022.
  11. J. Nalepa, S. Adamski, K. Kotowski, S. Chelstowska, M. Machnikowska-Sokolowska, O. Bozek, A. Wisz, and E. Jurkiewicz, “Segmenting pediatric optic pathway gliomas from mri using deep learning,” Computers in Biology and Medicine, vol. 142, p. 105237, 2022.
  12. M. Artzi, S. Gershov, L. Ben-Sira, J. Roth, D. Kozyrev, B. Shofty, T. Gazit, T. Halag-Milo, S. Constantini, and D. Ben Bashat, “Automatic segmentation, classification, and follow-up of optic pathway gliomas using deep learning and fuzzy c-means clustering based on mri,” Medical Physics, vol. 47, no. 11, pp. 5693–5701, 2020.
  13. C. Tor-Diez, A. R. Porras, R. J. Packer, R. A. Avery, and M. G. Linguraru, “Unsupervised mri homogenization: application to pediatric anterior visual pathway segmentation,” in Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings 11, pp. 180–188, Springer, 2020.
  14. A. Mansoor, J. J. Cerrolaza, R. Idrees, E. Biggs, M. A. Alsharid, R. A. Avery, and M. G. Linguraru, “Deep learning guided partitioned shape model for anterior visual pathway segmentation,” IEEE transactions on medical imaging, vol. 35, no. 8, pp. 1856–1865, 2016.
  15. R. A. Avery, A. Mansoor, R. Idrees, C. Trimboli-Heidler, H. Ishikawa, R. J. Packer, and M. G. Linguraru, “Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1,” Neurology, vol. 87, no. 23, pp. 2403–2407, 2016.
  16. A. Mansoor, I. Li, R. J. Packer, R. A. Avery, and M. G. Linguraru, “Joint deep shape and appearance learning: application to optic pathway glioma segmentation,” in Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, pp. 423–429, SPIE, 2017.
  17. J. Peng, D. D. Kim, J. B. Patel, X. Zeng, J. Huang, K. Chang, X. Xun, C. Zhang, J. Sollee, J. Wu, et al., “Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors,” Neuro-oncology, vol. 24, no. 2, pp. 289–299, 2022.
  18. B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., “The multimodal brain tumor image segmentation benchmark (brats),” IEEE transactions on medical imaging, vol. 34, no. 10, pp. 1993–2024, 2014.
  19. S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features,” Scientific data, vol. 4, no. 1, pp. 1–13, 2017.
  20. S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki, et al., “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge,” arXiv preprint arXiv:1811.02629, 2018.
  21. U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani, J. Kalpathy-Cramer, F. C. Kitamura, S. Pati, et al., “The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification,” arXiv preprint arXiv:2107.02314, 2021.
  22. J. V. Lilly, J. L. Rokita, J. L. Mason, T. Patton, S. Stefankiewiz, D. Higgins, G. Trooskin, C. A. Larouci, K. Arya, E. Appert, et al., “The children’s brain tumor network (cbtn)-accelerating research in pediatric central nervous system tumors through collaboration and open science,” Neoplasia, vol. 35, p. 100846, 2023.
  23. A. Karargyris, R. Umeton, M. J. Sheller, A. Aristizabal, J. George, S. Bala, D. J. Beutel, V. Bittorf, A. Chaudhari, A. Chowdhury, et al., “Medperf: open benchmarking platform for medical artificial intelligence using federated evaluation,” arXiv preprint arXiv:2110.01406, 2021.
  24. R. Cox, J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C. Holmes, J. Lancaster, D. Rex, S. Smith, J. Woodward, et al., “A (sort of) new image data format standard: Nifti-1: We 150,” Neuroimage, vol. 22, 2004.
  25. T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum, “The sri24 multichannel atlas of normal adult human brain structure,” Human brain mapping, vol. 31, no. 5, pp. 798–819, 2010.
  26. C. Davatzikos, S. Rathore, S. Bakas, S. Pati, M. Bergman, R. Kalarot, P. Sridharan, A. Gastounioti, N. Jahani, E. Cohen, et al., “Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome,” Journal of medical imaging, vol. 5, no. 1, p. 011018, 2018.
  27. S. Rathore, S. Bakas, S. Pati, H. Akbari, R. Kalarot, P. Sridharan, M. Rozycki, M. Bergman, B. Tunc, R. Verma, et al., “Brain cancer imaging phenomics toolkit (brain-captk): an interactive platform for quantitative analysis of glioblastoma,” in International MICCAI Brainlesion Workshop, pp. 133–145, Springer, 2017.
  28. S. Pati, A. Singh, S. Rathore, A. Gastounioti, M. Bergman, P. Ngo, S. M. Ha, D. Bounias, J. Minock, G. Murphy, et al., “The cancer imaging phenomics toolkit (captk): Technical overview,” in International MICCAI Brainlesion Workshop, pp. 380–394, Springer, 2019.
  29. C. G. Schwarz, W. K. Kremers, T. M. Therneau, R. R. Sharp, J. L. Gunter, P. Vemuri, A. Arani, A. J. Spychalla, K. Kantarci, D. S. Knopman, R. C. Petersen, and C. R. Jack, “Identification of anonymous mri research participants with face-recognition software,” New England Journal of Medicine, vol. 381, no. 17, pp. 1684–1686, 2019. PMID: 31644852.
  30. C. G. Schwarz, W. K. Kremers, T. M. Therneau, R. R. Sharp, J. L. Gunter, P. Vemuri, A. Arani, A. J. Spychalla, K. Kantarci, D. S. Knopman, R. C. Petersen, and C. R. Jack, “Identification from mri with face-recognition software,” New England Journal of Medicine, vol. 382, no. 5, pp. 489–490, 2020. PMID: 31995706.
  31. X. Liu, E. R. Bonner, Z. Jiang, H. R. Roth, R. Packer, M. Bornhorst, and M. G. Linguraru, “From adult to pediatric: deep learning-based automatic segmentation of rare pediatric brain tumors,” in Medical Imaging 2023: Computer-Aided Diagnosis (K. M. Iftekharuddin and W. Chen, eds.), vol. 12465, p. 1246505, International Society for Optics and Photonics, SPIE, 2023.
  32. P. A. Yushkevich, J. Piven, H. Cody Hazlett, R. Gimpel Smith, S. Ho, J. C. Gee, and G. Gerig, “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,” Neuroimage, vol. 31, no. 3, pp. 1116–1128, 2006.
  33. S. Pati, S. P. Thakur, İ. E. Hamamcı, U. Baid, B. Baheti, M. Bhalerao, O. Güley, S. Mouchtaris, D. Lang, S. Thermos, et al., “Gandlf: the generally nuanced deep learning framework for scalable end-to-end clinical workflows,” Communications Engineering, vol. 2, no. 1, p. 23, 2023.
Citations (34)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com