The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-treatment MRI (2405.18368v1)
Abstract: Gliomas are the most common malignant primary brain tumors in adults and one of the deadliest types of cancer. There are many challenges in treatment and monitoring due to the genetic diversity and high intrinsic heterogeneity in appearance, shape, histology, and treatment response. Treatments include surgery, radiation, and systemic therapies, with magnetic resonance imaging (MRI) playing a key role in treatment planning and post-treatment longitudinal assessment. The 2024 Brain Tumor Segmentation (BraTS) challenge on post-treatment glioma MRI will provide a community standard and benchmark for state-of-the-art automated segmentation models based on the largest expert-annotated post-treatment glioma MRI dataset. Challenge competitors will develop automated segmentation models to predict four distinct tumor sub-regions consisting of enhancing tissue (ET), surrounding non-enhancing T2/fluid-attenuated inversion recovery (FLAIR) hyperintensity (SNFH), non-enhancing tumor core (NETC), and resection cavity (RC). Models will be evaluated on separate validation and test datasets using standardized performance metrics utilized across the BraTS 2024 cluster of challenges, including lesion-wise Dice Similarity Coefficient and Hausdorff Distance. Models developed during this challenge will advance the field of automated MRI segmentation and contribute to their integration into clinical practice, ultimately enhancing patient care.
- Q. T. Ostrom, M. Price, C. Neff, G. Cioffi, K. A. Waite, C. Kruchko, and J. S. Barnholtz-Sloan, “Cbtrus statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2016—2020,” Neuro-oncology, vol. 25, no. Supplement_4, pp. iv1–iv99, 2023.
- Lyon: International Agency for Research on Cancer, 5 ed., 2021.
- R. Stupp, W. P. Mason, M. J. Van Den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, et al., “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” New England journal of medicine, vol. 352, no. 10, pp. 987–996, 2005.
- K. V. Hoebel, C. P. Bridge, S. Ahmed, O. Akintola, C. Chung, R. Y. Huang, J. M. Johnson, A. Kim, K. I. Ly, K. Chang, et al., “Expert-centered evaluation of deep learning algorithms for brain tumor segmentation,” Radiology: Artificial Intelligence, vol. 6, no. 1, p. e220231, 2023.
- K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, pp. 1045–1057, 2013.
- B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., “The multimodal brain tumor image segmentation benchmark (brats),” IEEE transactions on medical imaging, vol. 34, no. 10, pp. 1993–2024, 2014.
- S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki, et al., “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge,” arXiv preprint arXiv:1811.02629, 2018.
- U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani, J. Kalpathy-Cramer, F. C. Kitamura, S. Pati, et al., “The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification,” arXiv preprint arXiv:2107.02314, 2021.
- P. Kickingereder, F. Isensee, I. Tursunova, J. Petersen, U. Neuberger, D. Bonekamp, G. Brugnara, M. Schell, T. Kessler, M. Foltyn, et al., “Automated quantitative tumour response assessment of mri in neuro-oncology with artificial neural networks: a multicentre, retrospective study,” The Lancet Oncology, vol. 20, no. 5, pp. 728–740, 2019.
- K. Chang, A. L. Beers, H. X. Bai, J. M. Brown, K. I. Ly, X. Li, J. T. Senders, V. K. Kavouridis, A. Boaro, C. Su, et al., “Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement,” Neuro-oncology, vol. 21, no. 11, pp. 1412–1422, 2019.
- J. D. Rudie, E. Calabrese, R. Saluja, D. Weiss, J. B. Colby, S. Cha, C. P. Hess, A. M. Rauschecker, L. P. Sugrue, and J. E. Villanueva-Meyer, “Longitudinal assessment of posttreatment diffuse glioma tissue volumes with three-dimensional convolutional neural networks,” Radiology: Artificial Intelligence, vol. 4, no. 5, p. e210243, 2022.
- E. Lotan, B. Zhang, S. Dogra, W. Wang, D. Carbone, G. Fatterpekar, E. Oermann, and Y. Lui, “Development and practical implementation of a deep learning–based pipeline for automated pre-and postoperative glioma segmentation,” American Journal of Neuroradiology, vol. 43, no. 1, pp. 24–32, 2022.
- M. Ghaffari, G. Samarasinghe, M. Jameson, F. Aly, L. Holloway, P. Chlap, E.-S. Koh, A. Sowmya, and R. Oliver, “Automated post-operative brain tumour segmentation: A deep learning model based on transfer learning from pre-operative images,” Magnetic resonance imaging, vol. 86, pp. 28–36, 2022.
- P. J. Sørensen, J. F. Carlsen, V. A. Larsen, F. L. Andersen, C. N. Ladefoged, M. B. Nielsen, H. S. Poulsen, and A. E. Hansen, “Evaluation of the hd-glio deep learning algorithm for brain tumour segmentation on postoperative mri,” Diagnostics, vol. 13, no. 3, p. 363, 2023.
- P. Vollmuth, M. Foltyn, R. Y. Huang, N. Galldiks, J. Petersen, F. Isensee, M. J. van den Bent, F. Barkhof, J. E. Park, Y. W. Park, et al., “Artificial intelligence (ai)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: an international multi-reader study,” Neuro-oncology, vol. 25, no. 3, pp. 533–543, 2023.
- S. Baig, I. Vidic, G. M. Mastorakos, R. X. Smith, N. White, S. Bash, A. M. Dale, C. R. McDonald, T. Beaumont, T. M. Seibert, J. Hattangadi-Gluth, S. Kesari, N. Farid, and J. D. Rudie, “Segmentation of Pre- and Post-Treatment Diffuse Glioma Tissue Subregions Including Resection Cavities,” In Revision at Neuro-Oncology Advances, 2024.
- B. K. Fields, E. Calabrese, J. Mongan, S. Cha, C. P. Hess, L. P. Sugrue, S. M. Chang, T. L. Luks, J. E. Villanueva-Meyer, A. M. Rauschecker, and J. D. Rudie, “The University of California, San Francisco Longitudinal Post-Treatment Diffuse Glioma (UCSF-ALPTDG) MRI Dataset.,” In Revision at Radiology: Artificial Intelligence, 2024.
- S. Cepeda, S. García-García, I. Arrese, F. Herrero, T. Escudero, T. Zamora, and R. Sarabia, “The río hortega university hospital glioblastoma dataset: A comprehensive collection of preoperative, early postoperative and recurrence mri scans (rhuh-gbm),” Data in Brief, vol. 50, p. 109617, 2023.
- S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, “Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features,” Scientific data, vol. 4, no. 1, pp. 1–13, 2017.
- R. W. Cox, J. Ashburner, H. Breman, K. Fissell, C. Haselgrove, C. J. Holmes, J. L. Lancaster, D. E. Rex, S. M. Smith, J. B. Woodward, et al., “A (sort of) new image data format standard: Nifti-1,” in 10th Annual Meeting of the Organization for Human Brain Mapping, vol. 22, p. 01, 2004.
- F. Isensee, M. Schell, I. Pflueger, G. Brugnara, D. Bonekamp, U. Neuberger, A. Wick, H.-P. Schlemmer, S. Heiland, W. Wick, et al., “Automated brain extraction of multisequence mri using artificial neural networks,” Human brain mapping, vol. 40, no. 17, pp. 4952–4964, 2019.
- S. Pati, A. Singh, S. Rathore, A. Gastounioti, M. Bergman, P. Ngo, S. M. Ha, D. Bounias, J. Minock, G. Murphy, et al., “The cancer imaging phenomics toolkit (captk): technical overview,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II 5, pp. 380–394, Springer, 2020.
- F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnu-net: a self-configuring method for deep learning-based biomedical image segmentation,” Nature methods, vol. 18, no. 2, pp. 203–211, 2021.
- A. Myronenko, M. M. R. Siddiquee, D. Yang, Y. He, and D. Xu, “Automated head and neck tumor segmentation from 3d pet/ct,” arXiv preprint arXiv:2209.10809, 2022.
- T. Rohlfing, D. B. Russakoff, and C. R. Maurer, “Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation,” IEEE transactions on medical imaging, vol. 23, no. 8, pp. 983–994, 2004.
- A. F. Kazerooni, N. Khalili, X. Liu, D. Haldar, Z. Jiang, S. M. Anwar, J. Albrecht, M. Adewole, U. Anazodo, H. Anderson, et al., “The brain tumor segmentation (brats) challenge 2023: Focus on pediatrics (cbtn-connect-dipgr-asnr-miccai brats-peds),” ArXiv, 2023.
- A. W. Moawad, A. Janas, U. Baid, D. Ramakrishnan, L. Jekel, K. Krantchev, H. Moy, R. Saluja, K. Osenberg, K. Wilms, et al., “The brain tumor segmentation (brats-mets) challenge 2023: Brain metastasis segmentation on pre-treatment mri,” ArXiv, 2023.
- D. LaBella, M. Adewole, M. Alonso-Basanta, T. Altes, S. M. Anwar, U. Baid, T. Bergquist, R. Bhalerao, S. Chen, V. Chung, et al., “The asnr-miccai brain tumor segmentation (brats) challenge 2023: Intracranial meningioma,” arXiv preprint arXiv:2305.07642, 2023.
- M. Adewole, J. D. Rudie, A. Gbdamosi, O. Toyobo, C. Raymond, D. Zhang, O. Omidiji, R. Akinola, M. A. Suwaid, A. Emegoakor, et al., “The brain tumor segmentation (brats) challenge 2023: Glioma segmentation in sub-saharan africa patient population (brats-africa),” ArXiv, 2023.
- D. LaBella, U. Baid, O. Khanna, S. McBurney-Lin, R. McLean, P. Nedelec, A. Rashid, N. H. Tahon, T. Altes, R. Bhalerao, et al., “Analysis of the brats 2023 intracranial meningioma segmentation challenge,” arXiv preprint arXiv:2405.09787, 2024.
- D. LaBella, O. Khanna, S. McBurney-Lin, R. Mclean, P. Nedelec, A. S. Rashid, N. h. Tahon, T. Altes, U. Baid, R. Bhalerao, et al., “A multi-institutional meningioma mri dataset for automated multi-sequence image segmentation,” Scientific Data, vol. 11, no. 1, p. 496, 2024.
- R. Duan, J. Tong, L. Lin, L. Levine, M. Sammel, J. Stoddard, T. Li, C. H. Schmid, H. Chu, and Y. Chen, “Palm: Patient-centered treatment ranking via large-scale multivariate network meta-analysis,” The Annals of Applied Statistics, vol. 17, no. 1, pp. 815–837, 2023.
- M. Niyazi, N. Andratschke, M. Bendszus, A. J. Chalmers, S. C. Erridge, N. Galldiks, F. J. Lagerwaard, P. Navarria, P. M. af Rosenschöld, U. Ricardi, et al., “Estro-eano guideline on target delineation and radiotherapy details for glioblastoma,” Radiotherapy and Oncology, vol. 184, p. 109663, 2023.
- E. Ermiş, A. Jungo, R. Poel, M. Blatti-Moreno, R. Meier, U. Knecht, D. M. Aebersold, M. K. Fix, P. Manser, M. Reyes, et al., “Fully automated brain resection cavity delineation for radiation target volume definition in glioblastoma patients using deep learning,” Radiation oncology, vol. 15, pp. 1–10, 2020.
- J. D. Rudie, A. M. Rauschecker, R. N. Bryan, C. Davatzikos, and S. Mohan, “Emerging applications of artificial intelligence in neuro-oncology,” Radiology, vol. 290, no. 3, pp. 607–618, 2019.
- Maria Correia de Verdier (6 papers)
- Rachit Saluja (12 papers)
- Louis Gagnon (2 papers)
- Dominic LaBella (13 papers)
- Ujjwall Baid (1 paper)
- Nourel Hoda Tahon (6 papers)
- Martha Foltyn-Dumitru (4 papers)
- Jikai Zhang (9 papers)
- Maram Alafif (1 paper)
- Saif Baig (1 paper)
- Ken Chang (28 papers)
- Gennaro D'Anna (2 papers)
- Lisa Deptula (4 papers)
- Diviya Gupta (1 paper)
- Muhammad Ammar Haider (5 papers)
- Ali Hussain (4 papers)
- Michael Iv (11 papers)
- Marinos Kontzialis (2 papers)
- Paul Manning (1 paper)
- Farzan Moodi (2 papers)