Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Oases: Efficient Large-Scale Model Training on Commodity Servers via Overlapped and Automated Tensor Model Parallelism (2305.16121v2)

Published 25 May 2023 in cs.DC

Abstract: Deep learning is experiencing a rise in large-scale models. Training large-scale models is costly, prompting researchers to train large-scale models on commodity servers that more researchers can access. The massive number of parameters necessitates the use of model parallelism training methods. Existing studies focus on training with pipeline model parallelism. However, the tensor model parallelism (TMP) is inevitable when the model size keeps increasing, where frequent data-dependent communication and computation operations significantly reduce the training efficiency. In this paper, we present Oases, an automated TMP method with overlapped communication to accelerate large-scale model training on commodity servers. Oases proposes a fine-grained training operation schedule to maximize overlapping communication and computation that have data dependence. Additionally, we design the Oases planner that searches for the best model parameter partition strategy of TMP to achieve further accelerations. Unlike existing methods, Oases planner is tailored to model the cost of overlapped communication-computation operations. We evaluate Oases on various model settings and two commodity clusters, and compare Oases to four state-of-the-art implementations. Experimental results show that Oases achieves speedups of 1.01--1.48(\times) over the fastest baseline, and speedups of up to 1.95(\times) over Megatron.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.