Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Double Descent of Discrepancy: A Task-, Data-, and Model-Agnostic Phenomenon (2305.15907v1)

Published 25 May 2023 in cs.LG

Abstract: In this paper, we studied two identically-trained neural networks (i.e. networks with the same architecture, trained on the same dataset using the same algorithm, but with different initialization) and found that their outputs discrepancy on the training dataset exhibits a "double descent" phenomenon. We demonstrated through extensive experiments across various tasks, datasets, and network architectures that this phenomenon is prevalent. Leveraging this phenomenon, we proposed a new early stopping criterion and developed a new method for data quality assessment. Our results show that a phenomenon-driven approach can benefit deep learning research both in theoretical understanding and practical applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)