Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved upper bounds on the number of non-zero weights of cyclic codes (2305.14687v1)

Published 24 May 2023 in cs.IT and math.IT

Abstract: Let C be an arbitrary simple-root cyclic code and let G be the subgroup of Aut(C) (the automorphism group of C) generated by the multiplier, the cyclic shift and the scalar multiplications. To the best of our knowledge, the subgroup G is the largest subgroup of Aut(C). In this paper, an explicit formula, in some cases an upper bound, for the number of orbits of G on C{0} is established. An explicit upper bound on the number of non-zero weights of C is consequently derived and a necessary and sufficient condition for the code C meeting the bound is exhibited. Many examples are presented to show that our new upper bounds are tight and are strictly less than the upper bounds in [Chen and Zhang, IEEE-TIT, 2023]. In addition, for two special classes of cyclic codes, smaller upper bounds on the number of non-zero weights of such codes are obtained by replacing G with larger subgroups of the automorphism groups of these codes. As a byproduct, our main results suggest a new way to find few-weight cyclic codes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.