Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic wind power forecasting resilient to missing values: an adaptive quantile regression approach (2305.14662v3)

Published 24 May 2023 in stat.AP, cs.SY, and eess.SY

Abstract: Probabilistic wind power forecasting approaches have significantly advanced in recent decades. However, forecasters often assume data completeness and overlook the challenge of missing values resulting from sensor failures, network congestion, etc. Traditionally, this issue is addressed during the data preprocessing procedure using methods such as deletion and imputation. Nevertheless, these ad-hoc methods pose challenges to probabilistic wind power forecasting at both parameter estimation and operational forecasting stages. In this paper, we propose a resilient probabilistic forecasting approach that smoothly adapts to missingness patterns without requiring preprocessing or retraining. Specifically, we design an adaptive quantile regression model with parameters capable of adapting to missing patterns, comprising two modules. The first is a feature extraction module where weights are kept static and biases are designed as a function of missingness patterns. The second is a non-crossing quantile neural network module, ensuring monotonicity of quantiles, with higher quantiles derived by adding non-negative amounts to lower quantiles. The proposed approach is applicable to cases under all missingness mechanisms including missing-not-at-random cases. Case studies demonstrate that our proposed approach achieves state-of-the-art results in terms of the continuous ranked probability score, with acceptable computational cost.

Citations (3)

Summary

We haven't generated a summary for this paper yet.