Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tackling Missing Values in Probabilistic Wind Power Forecasting: A Generative Approach (2403.03631v1)

Published 6 Mar 2024 in cs.LG, cs.SY, and eess.SY

Abstract: Machine learning techniques have been successfully used in probabilistic wind power forecasting. However, the issue of missing values within datasets due to sensor failure, for instance, has been overlooked for a long time. Although it is natural to consider addressing this issue by imputing missing values before model estimation and forecasting, we suggest treating missing values and forecasting targets indifferently and predicting all unknown values simultaneously based on observations. In this paper, we offer an efficient probabilistic forecasting approach by estimating the joint distribution of features and targets based on a generative model. It is free of preprocessing, and thus avoids introducing potential errors. Compared with the traditional "impute, then predict" pipeline, the proposed approach achieves better performance in terms of continuous ranked probability score.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. T. Hong, P. Pinson, Y. Wang, R. Weron, D. Yang, and H. Zareipour, “Energy forecasting: A review and outlook,” IEEE Open Access Journal of Power and Energy, 2020.
  2. P. Pinson, C. Chevallier, and G. N. Kariniotakis, “Trading wind generation from short-term probabilistic forecasts of wind power,” IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1148–1156, 2007.
  3. P. Pinson, “Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions,” Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 61, no. 4, pp. 555–576, 2012.
  4. H. Wen, J. Ma, J. Gu, L. Yuan, and Z. Jin, “Sparse variational gaussian process based day-ahead probabilistic wind power forecasting,” IEEE Transactions on Sustainable Energy, vol. 13, no. 2, pp. 957–970, 2022.
  5. R. Koenker and K. F. Hallock, “Quantile regression,” Journal of economic perspectives, vol. 15, no. 4, pp. 143–156, 2001.
  6. M. Landry, T. P. Erlinger, D. Patschke, and C. Varrichio, “Probabilistic gradient boosting machines for gefcom2014 wind forecasting,” International Journal of Forecasting, vol. 32, no. 3, pp. 1061 – 1066, 2016.
  7. H. Wen, J. Gu, J. Ma, L. Yuan, and Z. Jin, “Probabilistic load forecasting via neural basis expansion model based prediction intervals,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3648–3660, 2021.
  8. P. Pinson and G. Kariniotakis, “Conditional prediction intervals of wind power generation,” IEEE Transactions on Power Systems, vol. 25, no. 4, pp. 1845–1856, 2010.
  9. H. Wen, P. Pinson, J. Ma, J. Gu, and Z. Jin, “Continuous and distribution-free probabilistic wind power forecasting: A conditional normalizing flow approach,” IEEE Transactions on Sustainable Energy, vol. 13, no. 4, pp. 2250–2263, 2022.
  10. R. Tawn, J. Browell, and I. Dinwoodie, “Missing data in wind farm time series: Properties and effect on forecasts,” Electric Power Systems Research, vol. 189, p. 106640, 2020.
  11. A. Stratigakos, P. Andrianesis, A. Michiorri, and G. Kariniotakis, “Towards resilient energy forecasting: A robust optimization approach,” IEEE Transactions on Smart Grid, 2023.
  12. H. Wen, P. Pinson, J. Gu, and Z. Jin, “Wind energy forecasting with missing values within a fully conditional specification framework,” International Journal of Forecasting, 2023.
  13. R. H. Jones, “Maximum likelihood fitting of arma models to time series with missing observations,” Technometrics, vol. 22, no. 3, pp. 389–395, 1980.
  14. A. C. Harvey and R. G. Pierse, “Estimating missing observations in economic time series,” Journal of the American statistical Association, vol. 79, no. 385, pp. 125–131, 1984.
  15. R. Kohn and C. F. Ansley, “Estimation, prediction, and interpolation for arima models with missing data,” Journal of the American statistical Association, vol. 81, no. 395, pp. 751–761, 1986.
  16. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
  17. P.-A. Mattei and J. Frellsen, “Miwae: Deep generative modelling and imputation of incomplete data sets,” in International conference on machine learning.   PMLR, 2019, pp. 4413–4423.
  18. D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in International conference on machine learning.   PMLR, 2015, pp. 1530–1538.
  19. D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3, pp. 581–592, 1976.
  20. C. Draxl, A. Clifton, B.-M. Hodge, and J. McCaa, “The wind integration national dataset (wind) toolkit,” Applied Energy, vol. 151, pp. 355–366, 2015.
  21. D. J. Stekhoven and P. Bühlmann, “Missforest—non-parametric missing value imputation for mixed-type data,” Bioinformatics, vol. 28, no. 1, pp. 112–118, 2012.
  22. D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar: Probabilistic forecasting with autoregressive recurrent networks,” International Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191, 2020.
  23. T. Gneiting and M. Katzfuss, “Probabilistic forecasting,” Annual Review of Statistics and Its Application, vol. 1, pp. 125–151, 2014.
  24. Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,” in International Conference on Learning Representations, 2016.

Summary

We haven't generated a summary for this paper yet.